A posteriori error estimation for randomized low-rank approximation
Abstract
A number of algorithms are now available---including Halko-Martinsson-Tropp, interpolative decomposition, CUR, generalized Nystrom, and QR with column pivoting---for computing a low-rank approximation of matrices. Some methods come with extremely strong guarantees, while others may fail with nonnegligible probability. We present methods for efficiently estimating the error of the approximation for a specific instantiation of the methods. Such certificate allows us to execute "responsibly reckless" algorithms, wherein one tries a fast, but potentially unstable, algorithm, to obtain a potential solution; the quality of the solution is then assessed in a reliable fashion, and remedied if necessary. This is joint work with Gunnar Martinsson.
Time permitting, I will ramble about other topics in Randomised NLA.
13:00
Homotopy algebras, quantum field theory and AKSZ-gravity
Abstract
We’ll begin by introducing homotopy algebras (assuming no background) and their intimate connection to quantum field theory, with a briefly summary of some applications: scattering amplitude recursion relations, colour-kinematics duality, and generalised asymptotic observables. We’ll then introduce (deformed) Alexandrov–Kontsevich–Schwarz–Zaboronsky theories as the paradigmatic example of this framework, before developing their applications to gravity in two, three and four dimensions.
15:30
The Logarithmic Hilbert Scheme
Abstract
I am interested in studying moduli spaces and associated enumerative invariants via degeneration techniques. Logarithmic geometry is a natural language for constructing and studying relevant moduli spaces. In this talk I will explain the logarithmic Hilbert (or more generally Quot) scheme and outline how the construction helps study enumerative invariants associated to Hilbert/Quot schemes- a story we now understand well. Time permitting, I will discuss some challenges and key insights for studying moduli of stable vector bundles/ sheaves via similar techniques - a theory whose details are still being worked out.
There are less than two weeks left until the Hilary Term deadline for the Public and Community Engagement with Research (PCER) Fund. This internal grant scheme offers up to £6,000 per project to support researchers and public engagement facilitators at the University of Oxford in conducting public and community engagement with research activities. Applications are accepted each term, with the next deadline on 20 January.
On the data-sparsity of the solution of Riccati equations with quasiseparable coefficients
Abstract
Solving large-scale continuous-time algebraic Riccati equations is a significant challenge in various control theory applications.
This work demonstrates that when the matrix coefficients of the equation are quasiseparable, the solution also exhibits numerical quasiseparability. This property enables us to develop two efficient Riccati solvers. The first solver is applicable to the general quasiseparable case, while the second is tailored to the particular case of banded coefficients. Numerical experiments confirm the effectiveness of the proposed algorithms on both synthetic examples and case studies from the control of partial differential equations and agent-based models.
15:00
Emergent Phenomena in Critical Models of Statistical Physics: Exploring 2D Percolation
Abstract
For over 150 years, the study of phase transitions—such as water freezing into ice or magnets losing their magnetism—has been a cornerstone of statistical physics. In this talk, we explore the critical behavior of two-dimensional percolation models, which use random graphs to model the behavior of porous media. At the critical point, remarkable symmetries and emergent properties arise, providing precise insights into the nature of these systems and enriching our understanding of phase transitions. The presentation is designed to be accessible and does not assume any prior background in percolation theory.
About the Speaker:
Hugo Duminil-Copin is is a French mathematician recognised for his groundbreaking work in probability theory and mathematical physics. He was appointed full professor at the University of Geneva in 2014 and since 2016 has also been a permanent professor at the Institut des Hautes Études Scientifiques (IHES) in France. In 2022 he was awarded the Fields Medal, the highest distinction in mathematics.