Mon, 18 Nov 2024
16:30
L4

Short- and long-time behavior in evolution equations: the role of the hypocoercivity index

Anton Arnold
(Vienna University of Technology)
Abstract

The "index of hypocoercivity" is defined via a coercivity-type estimate for the self-adjoint/skew-adjoint parts of the generator, and it quantifies `how degenerate' a hypocoercive evolution equation is, both for ODEs and for evolutions equations in a Hilbert space. We show that this index characterizes the polynomial decay of the propagator norm for short time and illustrate these concepts for the Lorentz kinetic equation on a torus. Discrete time analogues of the above systems (obtained via the mid-point rule) are contractive, but typically not strictly contractive. For this setting we introduce "hypocontractivity" and an "index of hypocontractivity" and discuss their close connection to the continuous time evolution equations.

This talk is based on joint work with F. Achleitner, E. Carlen, E. Nigsch, and V. Mehrmann.

References:
1) F. Achleitner, A. Arnold, E. Carlen, The Hypocoercivity Index for the short time behavior of linear time-invariant ODE systems, J. of Differential Equations (2023).
2) A. Arnold, B. Signorello, Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium, Kinetic and Related Models (2022).
3) F. Achleitner, A. Arnold, V. Mehrmann, E. Nigsch, Hypocoercivity in Hilbert spaces, J. of Functional Analysis (2025).
 

Noninvertible Symmetries, Anomalies, and Scattering Amplitudes.
Copetti, C Córdova, L Komatsu, S Physical review letters volume 133 issue 18 181601 (Nov 2024)
Thu, 21 Nov 2024
13:00
N3.12

Aspects of anomalies

Alice Lüscher
Abstract

Anomalies characterize the breaking of a classical symmetry at the quantum level. They play an important role in quantum field theories, and constitute robust observables which appear in various contexts from phenomenological particle physics to black hole microstates, or to classify phases of matter. The anomalies of a d-dimensional QFT are naturally encoded via descent equations into the so-called anomaly polynomial in (d+2)-dimensions. The aim of this seminar is to review the descent procedure, anomaly polynomial, anomaly inflow, and in particular their realisation in M-theory. While this is quite an old story, there has been some more recent developments involving holography that I'll describe if time permits. 

 

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 14 Nov 2024
13:00
N3.12

JT Gravity as a Matrix Integral

Marta Bucca
Abstract
Jackiw-Teitelboim (JT) gravity is a two dimensional dilaton gravity system, which describes near extremal black holes. Its partition functions correspond to surfaces with n Schwarzian boundaries and arbitrary numbers of handles. The goal of this talk will be to show how to compute these partition functions by using a correspondence between the sum of handles and the genus expansion of a certain matrix integral.
 
Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.
The Insertion Method to Invert the Signature of a Path
Fermanian, A Chang, J Lyons, T Biau, G Recent Advances in Econometrics and Statistics 575-595 (29 Oct 2024)
Thu, 27 Feb 2025

14:00 - 15:00
Lecture Room 3

Learning-enhanced structure preserving particle methods for Landau equation

Li Wang
(University of Minnesota)
Abstract

The Landau equation stands as one of the fundamental equations in kinetic theory and plays a key role in plasma physics. However, computing it presents significant challenges due to the complexity of the Landau operator,  the dimensionality, and the need to preserve the physical properties of the solution. In this presentation, I will introduce deep learning assisted particle methods aimed at addressing some of these challenges. These methods combine the benefits of traditional structure-preserving techniques with the approximation power of neural networks, aiming to handle high dimensional problems with minimal training. 

Elliptic Stable Envelopes for Certain Non-Symplectic Varieties and Dynamical $R$-Matrices for Superspin Chains from the Bethe/Gauge Correspondence
Ishtiaque, N Moosavian, S Zhou, Y Symmetry Integrability and Geometry Methods and Applications (31 Oct 2024)
Rough Transformers: Lightweight Continuous-Time Sequence Modelling with Path Signatures
Moreno-Pino, F Arroyo, Á Waldon, H Dong, X Cartea, Á (31 May 2024)
Thu, 21 Nov 2024
17:00

Generic differential automorphisms in positive characteristic

Omar León Sánchez
(University of Manchester)
Abstract

It is well known that the theory of differential-difference fields in characteristic zero has a model companion. Here by a differential-difference field I mean a field with a differential and a difference structure where the operators commute (in other words the difference structure is a differential-endomorphism). The theory DCFA_0 was studied in a series of papers by Bustamante. In this talk I will address the case of positive characteristic.

Stokes flows in a two-dimensional bifurcation
Xue, Y Waters, S Royal Society Open Science volume 12 (22 Jan 2025)
Subscribe to