12:00
Analytic and Algebraic Structures in Feynman Integrals
Abstract
At the heart of both cross-section calculations at the Large Hadron Collider and gravitational wave physics lie the evaluation of Feynman integrals. These integrals are meromorphic functions (or distributions) of the parameters on which they depend and understanding their analytic structure has been an ongoing quest for over 60 years. In this talk, I will demonstrate how these integrals fits within the framework of generalized hypergeometry by Gelfand, Kapranov, and Zelevinsky (GKZ). In this framework the singularities are simply calculated by the principal A-determinant and I will show that some Feynman integrals can be used to generate Cohen-Macaulay rings which greatly simplify their analysis. However, not every integral fits within the GKZ framework and I will show how the singularities of every Feynman integral can be calculated using Whitney stratifications.
Unfiltered and Filtered Low-Regularity Approaches for Nonlinear Dispersive PDEs
Abstract
In this talk, I will present low-regularity numerical methods for nonlinear dispersive PDEs, with unfiltered schemes analyzed in Sobolev spaces and filtered schemes in discrete Bourgain spaces, offering effective handling of low-regularity and even rough solutions. I will highlight the significance of exploring structure-preserving low-regularity schemes, as this is a crucial area for further research.
16:00
Equivariant correspondences
Abstract
Given two von Neumann algebras A,B with an action by a locally compact (quantum) group G, one can consider its associated equivariant correspondences, which are usual A-B-correspondences (in the sense of Connes) with a compatible unitary G-representation. We show how the category of such equivariant A-B-correspondences carries an analogue of the Fell topology, which is preserved under natural operations (such as crossed products or equivariant Morita equivalence). If time permits, we will discuss one particular interesting example of such a category of equivariant correspondences, which quantizes the representation category of SL(2,R). This is based on joint works with Joeri De Ro and Joel Dzokou Talla.
16:00
Geodesic cycles and Eisenstein classes for SL(2,Z)
Abstract
The geodesic cycles (resp. Eisenstein classes) for SL(2,Z) are special classes in the homology (resp. cohomology) of modular curve (for SL(2,Z)) defined by the closed geodesics (resp. Eisenstein series). It is known that the pairing between these geodesic cycles and Eisenstein classes gives the special values of partial zeta functions of real quadratic fields, and this has many applications. In this talk, I would like to report on some recent observations on the size of the homology subgroup generated by geodesic cycles and their applications. This is a joint work with Ryotaro Sakamoto.
Get ready for another thrilling Table Football Tournament after last year’s smash success. Whether you’re a seasoned player or just up for some fun, this is your chance to claim the title of best team in the department.
What to expect:
• 2-player teams will face off in a group stage, followed by knockout rounds.
• The exact format will adapt depending on how many teams sign up – so rally your friends and get involved
How to enter: