Fri, 20 Jun 2025

11:00 - 12:00
L4

To be announced

Dr Rahil Valani
(The Rudolf Peierls Centre for Theoretical Physics Clarendon Laboratory University of Oxford)
Fri, 13 Jun 2025

11:00 - 12:00
L4

Cell-bulk compartmental reaction-diffusion systems: symmetry-breaking patterns with equal diffusivities and diffusion-Induced synchrony.

Professor Michael Ward
(Dept of Mathematics University of British Columbia)
Abstract

We investigate pattern formation for a 2D PDE-ODE bulk-cell model, where one or more bulk diffusing species are coupled to nonlinear intracellular
reactions that are confined within a disjoint collection of small compartments. The bulk species are coupled to the spatially segregated
intracellular reactions through Robin conditions across the cell boundaries. For this compartmental-reaction diffusion system, we show that
symmetry-breaking bifurcations leading to stable asymmetric steady-state patterns, as regulated by a membrane binding rate ratio, occur even when
two bulk species have equal bulk diffusivities. This result is in distinct contrast to the usual, and often biologically unrealistic, large
differential diffusivity ratio requirement for Turing pattern formation from a spatially uniform state. Secondly, for the case of one-bulk
diffusing species in R^2, we derive a new memory-dependent ODE integro-differential system that characterizes how intracellular
oscillations in the collection of cells are coupled through the PDE bulk-diffusion field. By using a fast numerical approach relying on the
``sum-of-exponentials'' method to derive a time-marching scheme for this nonlocal system, diffusion induced synchrony is examined for various
spatial arrangements of cells using the Kuramoto order parameter. This theoretical modeling framework, relevant when spatially localized nonlinear
oscillators are coupled through a PDE diffusion field, is distinct from the traditional Kuramoto paradigm for studying oscillator synchronization on
networks or graphs. (Joint work with Merlin Pelz, UBC and UMinnesota).

Fri, 06 Jun 2025

11:00 - 12:00
L4

Mathematical modeling of some aspects of Age-related Macular Degeneration (AMD)

Dr Luca Alasio
(INRIA Paris)
Abstract

Our visual perception of the world heavily relies on sophisticated and delicate biological mechanisms, and any disruption to these mechanisms negatively impacts our lives. Age-related macular degeneration (AMD) affects the central field of vision and has become increasingly common in our society, thereby generating a surge of academic and clinical interest. I will present some recent developments in the mathematical modeling of the retinal pigment epithelium (RPE) in the retina in the context of AMD; the RPE cell layer supports photoreceptor survival by providing nutrients and participating in the visual cycle and “cellular maintenance". Our objectives include modeling the aging and degeneration of the RPE with a mechanistic approach, as well as predicting the progression of atrophic lesions in the epithelial tissue. This is a joint work with the research team of Prof. M. Paques at Hôpital National des Quinze-Vingts.


 

Upper bounds on large deviations of Dirichlet L-functions in the q-aspect
Arguin, L Creighton, N Journal of Number Theory volume 273 96-158 (Aug 2025)

We invite applications for a Postdoctoral Research Assistant to undertake research in battery modeling within the Nextrode Project of the Faraday Institution, to work with Professor Jon Chapman at the Mathematical Institute, University of Oxford. This is a 15-month fixed term position, until 30 September 2026, though it may be extended if additional funding is forthcoming. The successful candidate will be expected to be in post by 1st July 2025, or as soon as possible thereafter.

 

Fri, 30 May 2025

11:00 - 12:00
L4

Modelling the rheology of biological tissue

Professor Suzanne Fielding
(Dept of Physics Durham University)
Abstract

The rheological (deformation and flow) properties of biological tissues  are important in processes such as embryo development, wound healing and 
tumour invasion. Indeed, processes such as these spontaneously generate  stresses within living tissue via active process at the single cell level. 
Tissues are also continually subject to external stresses and deformations  from surrounding tissues and organs. The success of numerous physiological 
functions relies on the ability of cells to withstand stress under some conditions, yet to flow collectively under others. Biological tissue is 
furthermore inherently viscoelastic, with a slow time-dependent mechanics.  Despite this rich phenomenology, the mechanisms that govern the 
transmission of stress within biological tissue, and its response to bulk deformation, remain poorly understood to date.

This talk will describe three recent research projects in modelling the rheology of biological tissue. The first predicts a strain-induced 
stiffening transition in a sheared tissue [1]. The second elucidates the interplay of external deformations applied to a tissue as a whole with 
internal active stresses that arise locally at the cellular level, and shows how this interplay leads to a host of fascinating rheological 
phenomena such as yielding, shear thinning, and continuous or discontinuous shear thickening [2]. The third concerns the formulation of 
a continuum constitutive model that captures several of these linear and nonlinear rheological phenomena [3].

[1] J. Huang, J. O. Cochran, S. M. Fielding, M. C. Marchetti and D. Bi, 
Physical Review Letters 128 (2022) 178001

[2] M. J. Hertaeg, S. M. Fielding and D. Bi, Physical Review X 14 (2024) 
011017.

[3] S. M. Fielding, J. O. Cochran, J. Huang, D. Bi, M. C. Marchetti, 
Physical Review E (Letter) 108 (2023) L042602.

Tue, 29 Apr 2025
13:00
L2

Non-perturbative Topological Strings from M-theory

Eran Palti
(Ben Gurion)
Abstract
Topological strings are simplified versions of full string theories. Like all string theories, they admit a perturbative genus expansion in their coupling. In this talk, I will describe a new approach to go beyond this expansion and gain exact full non-perturbative information on their partition function. The approach utilizes an identification between the topological string free energy and certain F-terms in the effective action of full type IIA strings. The latter are known to be calculable in a perturbative approach by uplifting IIA to M-theory and integrating out M2 branes. This is the famous calculation of Gopakumar and Vafa. I will describe recent results which show that integrating out the M2 branes infact yields not only the perturbative (asymptotic) expansion but the full exact non-perturbative free energy. The resulting expression manifests features expected from an exact expression, such as certain strong-weak coupling dualities, and special behaviour at self-dual values of the coupling. 
Foreword
Keating, J Oxford's Sedleian Professors of Natural Philosophy: The First 400 Years v-vi (14 Dec 2023)
Bubble racing in a Hele-Shaw cell
Booth, D Wu, K Griffiths, I Howell, P Nunes, J Stone, H Journal of Fluid Mechanics
Subscribe to