Fri, 16 Feb 2024

14:00 - 15:00
L3

Active surfaces in biology

Professor Alex Mietke
(Dept of Physics University of Oxford)
Abstract

The ability of biological matter to move and deform itself is facilitated by microscopic out-of-equilibrium processes that convert chemical energy into mechanical work. In many cases, this mechano-chemical activity takes place on effectively two-dimensional domains formed by, for example, multicellular structures like epithelial tissues or the outer surface of eukaryotic cells, the so-called actomyosin cortex.
We will show in the first part of the talk, that the large-scale dynamics and self-organisation of such structures can be captured by the theory of active fluids. Specifically, using a minimal model of active isotropic fluids, we can rationalize the emergence of asymmetric epithelial tissue flows in the flower beetle during early development, and explain cell rotations in the context of active chiral flows and left-right symmetry breaking that occurs as the model organism C. elegans sets up its body plan.
To develop a more general understanding of such processes, specifically the role of geometry, curvature and interactions with the environment, we introduce in the second part a theory of active fluid surfaces and discuss analytical and numerical tools to solve the corresponding momentum balance equations of curved and deforming surfaces. By considering mechanical interactions with the environment and the fully self-organized shape dynamics of active surfaces, these tools reveal novel mechanisms of symmetry breaking and pattern formation in active matter.

Mon, 12 Feb 2024

16:30 - 17:30
L5

OxPDE-WCMB seminar - From individual-based models to continuum descriptions: Modelling and analysis of interactions between different populations.

Dr Mariya Ptashnyk
(Dept of Maths Herriot Watt University)
Abstract

First we will show that the continuum counterpart of the discrete individual-based mechanical model that describes the dynamics of two contiguous cell populations is given by a free-boundary problem for the cell densities.  Then, in addition to interactions, we will consider the microscopic movement of cells and derive a fractional cross-diffusion system as the many-particle limit of a multi-species system of moderately interacting particles.

Fri, 02 Feb 2024

14:00 - 15:00
L3

Quantifying clonal selection and drift from a single bulk tissue sample

Dr Verena Korber
(Nuffield Division of Clinical Laboratory Sciences University of Oxford)
Abstract

Malignant transformation of somatic tissues is an evolutionary process, driven by selection for oncogenic mutations. Understanding when these mutations occur, and how fast mutant cell clones expand can improve diagnostic schemes and therapeutic intervention. However, clonal dynamics are not directly accessible in humans, posing a need for inference approaches to reconstruct the division history in normal and malignant cell clones, and to predict their future evolution. Inspired from population genetics theory, we develop mathematical models to detect imprints of clonal selection in the variant allele frequency distribution measured in a single tissue sample of a homeostatic tissue. I will present the theoretical basis of our approach and inference results for the tissue dynamics in physiological and clonal hematopoiesis, obtained from variant allele frequencies measured by snapshot bulk whole genome sequencing of human bone marrow samples.

Fri, 26 Jan 2024

14:00 - 15:00
L3

The hitchhiker's guide to complex models of intracellular signalling

Professor Fabian Frohli
(The Francis Crick Institute London)
Abstract

Unraveling the intricacies of intracellular signalling through predictive mathematical models holds great promise for advancing precision medicine and enhancing our foundational comprehension of biology. However, navigating the labyrinth of biological mechanisms governing signalling demands a delicate balance between a faithful description of the underlying biology and the practical utility of parsimonious models.
In this talk, I will present methods that enable training of large ordinary differential equation models of intracellular signalling and showcase application of such models to predict sensitivity to anti-cancer drugs. Through illustrative examples, I will demonstrate the application of these models in predicting sensitivity to anti-cancer drugs. A critical reflection on the construction of such models will be offered, exploring the perpetual question of complexity and how intricate these models should be.
Moreover, the talk will explore novel approaches that meld machine learning techniques with mathematical modelling. These approaches aim to harness the benefits of simplistic and unbiased phenomenological models while retaining the interpretability and biological fidelity inherent in mechanistic models.
 

Fri, 19 Jan 2024

14:00 - 15:00
L3

Modelling cells in one-dimension: diverse migration modes, emergent oscillations on junctions and multicellular "trains"

Professor Nir Gov
(Department of Chemical and Biological Physics Weizmann Institute of Science)
Abstract

Motile cells inside living tissues often encounter junctions, where their path branches into several alternative directions of migration. We present a theoretical model of cellular polarization for cells migrating along one-dimensional lines, exhibiting diverse migration modes. When arriving at a symmetric Y-junction and extending protrusions along the different paths that emanate from the junction. The model predicts the spontaneous emergence of deterministic oscillations between competing protrusions, whereby the cellular polarization and growth alternates between the competing protrusions. These predicted oscillations are found experimentally for two different cell types, noncancerous endothelial and cancerous glioma cells, migrating on patterned network of thin adhesive lanes with junctions. Finally we present an analysis of the migration modes of multicellular "trains" along one-dimensional tracks.

On large externally definable sets in NIP
Bays, M Ben-Neria, O Kaplan, I Simon, P Journal of the Institute of Mathematics of Jussieu volume 23 issue 5 2159-2173 (04 Dec 2023)
A frame approach for equations involving the fractional Laplacian
Papadopoulos, I Gutleb, T Carrillo, J Olver, S (21 Nov 2023)
Subscribe to