Photo of James Maynard

The Fields Medal is widely regarded as the highest honour a young mathematician can attain and is especially hard to win because the medals are only awarded every four years to mathematicians under the age of forty. This year Oxford Mathematician James Maynard is one of four recipients for his "contributions to analytic number theory, which have led to major advances in the understanding of the structure of prime numbers and in Diophantine approximation."

De-risking clinical trial failure through mechanistic simulation
Brown, L Wagg, J Darley, R van Hateren, A Elliott, T Gaffney, E Coles, M Immunotherapy Advances volume 1 issue 2 (23 Aug 2022)
Megavariate Genetics: What You Find Is What You Go Looking For
Bowman, C Biological Theory volume 4 issue 1 21-28 (14 Mar 2009)
Mechanical–electrochemical coupling theory of bacterial cells
Zhang, H Wang, H Gao, Y Zhang, K Vella, D Feng, X International Journal of Solids and Structures volume 252 111804-111804 (01 Oct 2022)
Tue, 11 Oct 2022
12:00
Virtual

Mathematical reflections on locality

Sylvie Paycha
(Institute of Mathematics University of Potsdam)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Abstract

Starting from the principle of locality in quantum field theory, which
states that an object is influenced directly only by its immediate

surroundings, I will first briefly review some features of the notion of
locality arising in physics and mathematics. These are then encoded
in  locality relations, given by symmetric binary relations whose graph
consists of pairs of "mutually independent elements".

I will mention challenging questions that arise from  enhancing algebraic
structures to their locality counterparts, such as i) when  is the quotient
of a locality vector space by a linear subspace, a locality vector space, if
equipped with the quotient locality relation,  ii) when does  the locality
tensor product of two locality vector spaces  define a locality vector
space. These are discussed in recent joint work  with Pierre Clavier, Loïc
Foissy and Diego López.

Locality morphisms, namely maps that factorise on   products of  pairs of
"mutually independent" elements, play a key role in the context of
renormalisation in
multiple variables. They include "locality evaluators", which we use to

consistently evaluate meromorphic germs in several variables at
their poles. I will  also report on recent joint work with Li Guo and Bin
Zhang. which gives a classification of locality evaluators on certain
classes of algebras of meromorphic germs.

 

Two-loop mixed QCD-EW corrections to qq¯ → Hg, qg → Hq, and q¯g → Hq¯
Bonetti, M Panzer, E Tancredi, L Journal of High Energy Physics volume 2022 issue 6 (20 Jun 2022)
Thu, 07 Jul 2022
12:00
C2

Resonances and unitarity from celestial amplitude

Dr Jinxiang Wu
((Oxford University))

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Abstract

We study the celestial description of the O(N) sigma model in the large N limit. Focusing on three dimensions, we analyze the implications of a UV complete, all-loop order 4-point amplitude of pions in terms of correlation functions defined on the celestial circle. We find these retain many key features from the previously studied tree-level case, such as their relation to Generalized Free Field theories and crossing-symmetry, but also incorporate new properties such as IR/UV softness and S-matrix metastable states. In particular, to understand unitarity, we propose a form of the optical theorem that controls the imaginary part of the correlator based solely on the presence of these resonances. We also explicitly analyze the conformal block expansions and factorization of four-point functions into three-point functions. We find that summing over resonances is key for these factorization properties to hold. This is a joint work with D. García-Sepúlveda, A. Guevara, J. Kulp.

Subscribe to