Fri, 15 Oct 2021

14:00 - 15:00
L2

Modeling and topological data analysis for biological ring channels

Prof Veronica Ciocanel
(Duke University)
Abstract

Actin filaments are polymers that interact with myosin motor
proteins and play important roles in cell motility, shape, and
development. Depending on its function, this dynamic network of
interacting proteins reshapes and organizes in a variety of structures,
including bundles, clusters, and contractile rings. Motivated by
observations from the reproductive system of the roundworm C. elegans,
we use an agent-based modeling framework to simulate interactions
between actin filaments and myosin motor proteins inside cells. We also
develop tools based on topological data analysis to understand
time-series data extracted from these filament network interactions. We
use these tools to compare the filament organization resulting from
myosin motors with different properties. We have also recently studied
how myosin motor regulation may regulate actin network architectures
during cell cycle progression. This work also raises questions about how
to assess the significance of topological features in common topological
summary visualizations.
 

Fri, 18 Jun 2021

14:00 - 15:00
Virtual

Jacobson's Commutativity Problem

Mike Daas
(Leiden University)
Abstract

It is a well-known fact that Boolean rings, those rings in which $x^2 = x$ for all $x$, are necessarily commutative. There is a short and completely elementary proof of this. One may wonder what the situation is for rings in which $x^n = x$ for all $x$, where $n > 2$ is some positive integer. Jacobson and Herstein proved a very general theorem regarding these rings, and the proof follows a widely applicable strategy that can often be used to reduce questions about general rings to more manageable ones. We discuss this strategy, but will also focus on a different approach: can we also find ''elementary'' proofs of some special cases of the theorem? We treat a number of these explicit computations, among which a few new results.

Wed, 08 Sep 2021

09:00 - 10:00
Virtual

Co-clustering Analysis of Multidimensional Big Data

Hong Yan
(City University of Hong Kong)
Further Information
Abstract

Although a multidimensional data array can be very large, it may contain coherence patterns much smaller in size. For example, we may need to detect a subset of genes that co-express under a subset of conditions. In this presentation, we discuss our recently developed co-clustering algorithms for the extraction and analysis of coherent patterns in big datasets. In our method, a co-cluster, corresponding to a coherent pattern, is represented as a low-rank tensor and it can be detected from the intersection of hyperplanes in a high dimensional data space. Our method has been used successfully for DNA and protein data analysis, disease diagnosis, drug therapeutic effect assessment, and feature selection in human facial expression classification. Our method can also be useful for many other real-world data mining, image processing and pattern recognition applications.

Tue, 06 Jul 2021

17:00 - 18:00

Mathemalchemy: a mathematical and artistic adventure - Ingrid Daubechies

Ingrid Daubechies
(Duke University)
Further Information

A collaborative art installation celebrating the joy, creativity and beauty of mathematics has been in the works for the past two years, and will soon be ready to emerge from its long gestation. The original idea, conceived by textile artist Dominique Ehrmann and mathematician Ingrid Daubechies inspired a team of 24 Mathemalchemists to work together, transforming the whole conception in the process, and bringing their individual expertise and whimsy to a large installation.

Despite the challenges of Covid-19, the team created a fantasy world where herons haul up nets loaded with special knots in the Knotical scene, a tortoise meditates while ambling along Zeno's path, chipmunks and squirrels ponder the mysteries of prime numbers, and a cat named Arnold bakes cookies that tile the plane in the Mandelbrot bakery; and a myriad more mathematical ideas swirl through the air.

This presentation will introduce some of the ideas and components, and show the team at work. Here's a sneak preview:
www.mathemalchemy.org
@mathemalchemy

Multi-award winning Ingrid Daubechies is James B. Duke Distinguished Professor of Mathematics and Electrical and Computer Engineering at Duke University.

Watch (no need to register and it will remain available after broadcast):
Oxford Mathematics YouTube

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

[[{"fid":"62753","view_mode":"media_397x223","fields":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-397x223","data-delta":"1"}}]]

Thu, 17 Jun 2021
11:30
Virtual

Compressible types in NIP theories

Itay Kaplan
(The Hebrew University of Jerusalem)
Abstract

I will discuss compressible types and relate them to uniform definability of types over finite sets (UDTFS), to uniformity of honest definitions and to the construction of compressible models in the context of (local) NIP. All notions will be defined during the talk.
Joint with Martin Bays and Pierre Simon.

Congratulations to Professor Alison Etheridge FRS who has been appointed as the new Chair of the Council for the Mathematical Sciences which represents the whole breadth of the mathematical sciences in the UK, with input from the Institute of Mathematics and its Applications (IMA), the London Mathematical Society (LMS), the Royal Statistical Society (RSS), the Edinburgh Mathematical Society (EMS) and the Operational Research Society (ORS).

Do supernovae indicate an accelerating universe?
Mohayaee, R Rameez, M Sarkar, S The European Physical Journal Special Topics (23 Jun 2021)
Subscribe to