Professor David Stainforth, London School of Economics and Political Science - Climate prediction: what is it and what is achievable?

Friday 31st January, 11.00 am – 12 noon

Large Lecture Theatre, Department of Statistics

Fri, 02 May 2025

12:00 - 13:00
Quillen Room

Arithmetic of Hyperelliptic Curves in Residue Characteristic 2

Tim Gehrunger
(ETH Zurich)
Abstract
The stable reduction of a hyperelliptic curve encodes many of its arithmetic invariants, such as the curve's conductor, minimal discriminant and Galois representation. 
In the case of odd residue characteristic, these models may be classified via their cluster pictures, which provides an explicit way to compute the invariants.
In the talk, we will explain recent progress towards a similar result in residue characteristic 2. In particular, we use marked models of the projective line to classify all genus 2 curves in residue characteristic 2.
Fri, 24 Jan 2025

12:00 - 13:00
Common Room

Junior Algebra Social

Abstract

The Junior Algebra and Representation Theory Seminar will kick-off the start of Hilary Term with a social event in the common room. Come to catch up with your fellow students and maybe play a board game or two. Afterwards we'll have lunch together.

Elephant trunk wrinkles: a mathematical model of function and form
Liu, Y Goriely, A Mihai, A Nonlinearity volume 38 (06 Feb 2025)
Thu, 13 Mar 2025
17:00
L3

Non-expanding polynomials

Tingxiang Zou
(University of Bonn)
Abstract

Let F(x,y) be a polynomial over the complex numbers. The Elekes-Ronyai theorem says that if F(x,y) is not essentially addition or multiplication, then F(x,y) exhibits expansion: for any finite subset A, B of complex numbers of size n, the size of F(A,B)={F(a,b):a in A, b in B} will be much larger than n. In fact, it is proved that |F(A,B)|>Cn^{4/3} for some constant C. In this talk, I will present a recent joint work with Martin Bays, which is an asymmetric and higher dimensional version of the Elekes-Rónyai theorem, where A and B can be taken to be of different sizes and y a tuple. This result is achieved via a generalisation of the Elekes-Szabó theorem.

Thu, 06 Mar 2025

17:00 - 18:00
L3

Orthogonal types to the value group and descent

Mariana Vicaria
(University of Münster)
Abstract
First, I will present a simplified proof of descent for stably dominated types in ACVF. I will also state a more general version of descent for stably dominated types in any theory, dropping the hypothesis of the existence of invariant extensions. This first part is joint work with Pierre Simon.
 
In the second part, motivated by the study of the space of definable types orthogonal to the value group in a henselian valued field and their cohomology; I will present a theorem that states that over an algebraically closed base of imaginary elements,  a global invariant type is residually dominated (essentially controlled by the residue field) if and only if it is orthogonal to the value group , if and only if its reduct in ACVF is stably dominated. This is joint work with Pablo Cubides and Silvain Rideau- Kikuchi. The result extend to some valued fields with operators.
Thu, 27 Feb 2025

17:00 - 18:00
L3

Representation Type, Decidability and Pseudofinite-dimensional Modules over Finite-dimensional Algebras

Lorna Gregory
(University of East Anglia)
Abstract
The representation type of a finite-dimensional k-algebra is an algebraic measure of how hard it is to classify its finite-dimensional indecomposable modules.
Intuitively, a finite-dimensional k-algebra is of tame representation type if we can classify its finite-dimensional modules and wild representation type if its module category contains a copy of the category of finite-dimensional modules of all other finite-dimensional k-algebras. An archetypical (although not finite-dimensional) tame algebra is k[x]. The structure theorem for finitely generated modules over a PID describes its finite-dimensional modules. Drozd’s famous dichotomy theorem states that all finite-dimensional algebras are either wild or tame.
The tame/wild dividing line is not seen by standard model theoretic invariants or even the more specialised invariants coming from Model Theory of Modules. A long-standing conjecture of Mike Prest claims that a finite-dimensional algebra has decidable theory of modules if and only if it is of tame representation type. More recently, I conjectured that a finite-dimensional algebra has decidable theory of (pseudo)finite dimensional modules if and only if it is of tame representation type. This talk will focus on recent work providing evidence for the second conjecture.
Thu, 20 Feb 2025

17:00 - 18:00
L3

Ax-Kochen/Ershov principles in positive characteristic

Franziska Jahnke
(University of Münster)
Abstract

A major open problem in the model theory of valued fields is to gain an understanding of the first-order theory of the power series field F((t)), where F denotes a finite field. For sufficiently "nice" henselian valued fields, the Ax-Kochen/Ershov philosophy allows to reduce questions of elementary equivalence and elementary embeddings to the analogous questions about the value group and residue field (or related structures). In my talk, I will present a new such principle which applies in particular to a large class of algebraic extensions of F((t)), albeit not to F((t)) itself. The talk is based on joint work with Konstantinos Kartas and Jonas van der Schaaf.

Thu, 13 Feb 2025
17:00
L3

The open core of NTP2 topological structures

Pablo Andujar Guerrero
(University of Leeds)
Abstract

The open core of a structure is the reduct generated by the open definable sets. Tame topological structures (e.g. o-minimal) are often inter-definable with their open core. Structures such as M = (ℝ,<, +, ℚ) are wild in the sense that they define a dense co-dense set. Still, M is NIP and its open core is o-minimal. In this talk, we push forward the thesis that the open core of an NTP2 (a generalization of NIP) topological structure is tame. Our main result is that, under suitable conditions, the open core has quantifier elimination (every definable set is constructible), and its definable functions are generically continuous.

Subscribe to