Tue, 22 Oct 2019

12:00 - 13:00
C1

Learning from signals on graphs with unobserved edges

Micheal Schaub
(Department of Engineering)
Abstract

In many applications we are confronted with the following scenario: we observe snapshots of data describing the state of a system at particular times, and based on these observations we want to infer the (dynamical) interactions between the entities we observe. However, often the number of samples we can obtain from such a process are far too few to identify the network exactly. Can we still reliable infer some aspects of the underlying system?
Motivated by this question we consider the following alternative system identification problem: instead of trying to infer the exact network, we aim to recover a (low-dimensional) statistical model of the network based on the observed signals on the nodes.  More concretely, here we focus on observations that consist of snapshots of a diffusive process that evolves over the unknown network. We model the (unobserved) network as generated from an independent draw from a latent stochastic block model (SBM), and our goal is to infer both the partition of the nodes into blocks, as well as the parameters of this SBM. We present simple spectral algorithms that provably solve the partition and parameter inference problems with high-accuracy.

Tue, 07 Apr 2020

12:00 - 13:00
C1

TBD

Florian Klimm
(Imperial College)
Mon, 18 Nov 2019

18:45 - 19:45
L2

Applied Pure at the Mathematical Institute, Oxford: Music & Light Symbiosis no.3 - An Art Exhibition and a Light & Music Concert

Medea Bindewald & Katharine Beaugié
Further Information

An Art Exhibition and a Light & Music Concert

Katharine Beaugié - Light Sculpture
Medea Bindewald - Harpsichord
Curated by Balázs Szendrői

Concert: 18 November, 6.45pm followed by a reception
Exhibition: 18th November – 6th December 2019, Mon-Fri, 8am-6pm

Applied Pure is a unique collaboration between light sculptor Katharine Beaugié and international concert harpsichordist Medea Bindewald, combining the patterns made by water and light with the sound of harpsichord music in a mathematical environment.

Katharine Beaugié will also be exhibiting a new series of large-scale photograms (photographic shadows), displaying the patterns of the natural phenomena of human relationship with water and light.

The Programme of music for harpsichord and water includes the composers: Domenico Scarlatti (1685-1757), Johann Jakob Froberger (1616-1667), Enno Kastens (b 1967) and Johann Sebastian Bach (1685-1750).

For more information about the concert and exhibition which is FREE please click this link

Image of Drop | God 2018

[[{"fid":"56134","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_square","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"style":"height: 300px; width: 300px;","class":"media-element file-media-square","data-delta":"1"}}]]

Thu, 31 Oct 2019

12:00 - 13:00
L4

The Anderson Hamiltonian and related semi-linear evolution equations

Immanuel Zachhuber
(University of Bonn)
Abstract

The Anderson Hamiltonian is used to model particles moving in
disordered media, it can be thought of as a Schrödiger operator with an
extremely irregular random potential. Using the recently developed theory of
"Paracontrolled Distributions" we are able to define the Anderson
Hamiltonian as a self-adjoint non-positive operator on the 2- and
3-dimensional torus and give an explicit description of its domain.
Then we use these results to solve some semi-linear PDEs whose linear part
is given by the Anderson Hamiltonian, more precisely the multiplicative
stochastic NLS and nonlinear Wave equation.
This is joint work with M. Gubinelli and B. Ugurcan.

Tue, 12 Nov 2019
14:30
L5

Overview of a quotient geometry with simple geodesics for the manifold of fixed-rank positive-semidefinite matrices

Estelle Massart
(UC Louvain)
Abstract

We describe the main geometric tools required to work on the manifold of fixed-rank symmetric positive-semidefinite matrices: we present expressions for the Riemannian logarithm and the injectivity radius, to complement the already known Riemannian exponential. This manifold is particularly relevant when dealing with low-rank approximations of large positive-(semi)definite matrices. The manifold is represented as a quotient of the set of full-rank rectangular matrices (endowed with the Euclidean metric) by the orthogonal group. Our results allow understanding the failure of some curve fitting algorithms, when the rank of the data is overestimated. We illustrate these observations on a dataset made of covariance matrices characterizing a wind field.

Mon, 21 Oct 2019

12:45 - 13:45
L3

The Higgs Mechanism and Hasse diagrams

Antoine Bourget
(Imperial College London)
Abstract

I will explore the geometrical structure of Higgs branches of quantum field theories with 8 supercharges in 3, 4, 5 and 6 dimensions. They are hyperkahler singularities, and as such they can be described by a Hasse diagram built from a family of elementary transitions. This corresponds physically to the partial Higgs mechanism. Using brane systems and recently introduced notions of magnetic quivers and quiver subtraction, we formalise the rules to obtain the Hasse diagrams.

Mon, 25 Nov 2019

15:45 - 16:45
L3

Stochastic impulse control: Recent Progress and Applications

CHRISTOPH BELAK
(TU Berlin University)
Abstract


Stochastic impulse control problems are continuous-time optimization problems in which a stochastic system is controlled through finitely many impulses causing a discontinuous displacement of the state process. The objective is to construct impulses which optimize a given performance functional of the state process. This type of optimization problem arises in many branches of applied probability and economics such as optimal portfolio management under transaction costs, optimal forest harvesting, inventory control, and valuation of real options.

In this talk, I will give an introduction to stochastic impulse control and discuss classical solution techniques. I will then introduce a new method to solve impulse control problems based on superharmonic functions and a stochastic analogue of Perron's method, which allows to construct optimal impulse controls under a very general set of assumptions. Finally, I will show how the general results can be applied to optimal investment problems in the presence of transaction costs.

This talk is based on joint work with Sören Christensen (Christian-Albrechts-University Kiel), Lukas Mich (Trier University), and Frank T. Seifried (Trier University).

References:
C. Belak, S. Christensen, F. T. Seifried: A General Verification Result for Stochastic Impulse Control Problems. SIAM Journal on Control and Optimization, Vol. 55, No. 2, pp. 627--649, 2017.
C. Belak, S. Christensen: Utility Maximisation in a Factor Model with Constant and Proportional Transaction Costs. Finance and Stochastics, Vol. 23, No. 1, pp. 29--96, 2019.
C. Belak, L. Mich, F. T. Seifried: Optimal Investment for Retail Investors with Floored and Capped Costs. Preprint, available at http://ssrn.com/abstract=3447346, 2019.

Mon, 25 Nov 2019

14:15 - 15:15
L3

N-player games and mean-field games with smooth dependence on past absorptions

LUCIANO CAMPI
(London School of Economics)
Abstract

Mean-field games with absorption is a class of games, that have been introduced in Campi and Fischer (2018) and that can be viewed as natural limits of symmetric stochastic differential games with a large number of players who, interacting through a mean-field, leave the game as soon as their private states hit some given boundary. In this talk, we push the study of such games further, extending their scope along two main directions. First, a direct dependence on past absorptions has been introduced in the drift of players' state dynamics. Second, the boundedness of coefficients and costs has been considerably relaxed including drift and costs with linear growth. Therefore, the mean-field interaction among the players takes place in two ways: via the empirical sub-probability measure of the surviving players and through a process representing the fraction of past absorptions over time. Moreover, relaxing the boundedness of the coefficients allows for more realistic dynamics for players' private states. We prove existence of solutions of the mean-field game in strict as well as relaxed feedback form. Finally, we show that such solutions induce approximate Nash equilibria for the N-player game with vanishing error in the mean-field limit as N goes to infinity. This is based on a joint work with Maddalena Ghio and Giulia Livieri (SNS Pisa). 

Mon, 18 Nov 2019

15:45 - 16:45
L3

From discrete to continuous time models Some surprising news on an old topic

WALTER SCHACHERMAYER
(University of Vienna)
Abstract

We reconsider the approximations of the Black-Scholes model by discrete time models such as the binominal or the trinominal model.

We show that for continuous and bounded claims one may approximate the replication in the Black-Scholes model by trading in the discrete time models. The approximations holds true in measure as well as "with bounded risk", the latter assertion being the delicate issue. The remarkable aspect is that this result does not apply to the well-known binominal model, but to a much wider class of discrete approximating models, including, eg.,the trinominal model. by an example we show that we cannot do the approximation with "vanishing risk".

We apply this result to portfolio optimization and show that, for utility functions with "reasonable asymptotic elasticity" the solution to the discrete time portfolio optimization converge to their continuous limit, again in a wide class of discretizations including the trinominal model. In the absence of "reasonable asymptotic elasticity", however, surprising pathologies may occur.

Joint work with David Kreps (Stanford University)

Mon, 18 Nov 2019

14:15 - 15:15
L3

Distributionally Robust Portfolio Selection with Optimal Transport Costs

JOSE BLANCHET
(Stanford Unversity)
Abstract

We revisit portfolio selection models by considering a distributionally robust version, where the region of distributional uncertainty is around the empirical measure and the discrepancy between probability measures is dictated by optimal transport costs. In many cases, this problem can be simplified into an empirical risk minimization problem with a regularization term. Moreover, we extend a recently developed inference methodology in order to select the size of the distributional uncertainty in a data-driven way. Our formulations allow us to inform the distributional uncertainty region using market information (e.g. via implied volatilities). We provide substantial empirical tests that validate our approach.
(This presentation is based on the following papers: https://arxiv.org/pdf/1802.04885.pdf and https://arxiv.org/abs/1810.024….)

Subscribe to