Thu, 07 Mar 2019

16:00 - 17:00
L6

Algebraic independence for values of integral curves

Tiago Fonseca
(University of Oxford)
Abstract

After a brief introduction to the theory of transcendental numbers, I will discuss Nesterenko's 1996 celebrated theorem on the algebraic independence of values of Eisenstein series, and some related open problems. This motivates the second part of the talk, in which I will report on a recent geometric generalization of Nesterenko's method.

Thu, 07 Mar 2019
16:00
C4

From Formal to Actual Fibrations

Moritz Oliver Meisel
(Universität Augsburg)
Abstract

In this talk, I will sketch a geometrically flavoured proof of the 
Madsen-Weiss theorem based on work by Eliashberg-Galatius-Mishachev.
In order to prove the triviality of appropriate relative bordism groups, 
in a first step a variant of the wrinkling theorem shows
that one can reduce to consider fold maps (with additional structure). 
In a subsequent step, a geometric version of the Harer stability
theorem is used to get rid of the folds via surgery. I will focus on 
this second step.

We’re all familiar with liquid droplets moving under gravity (especially if you live somewhere as rainy as Oxford). However, emerging applications such as lab-on-a-chip technologies require precise control of extremely small droplets; on these scales, the forces associated with surface tension become dominant over gravity, and it is therefore not practical to rely on the weight of the drops for motion.

Tue, 05 Mar 2019

12:45 - 13:30
C3

Modelling Magnetically Targeted Stem Cell Delivery

Edwina Yeo
(Oxford University)
Abstract

The development of an effective method of targeting delivery of stem cells to the site of an injury is a key challenge in regenerative medicine. However, production of stem cells is costly and current delivery methods rely on large doses in order to be effective. Improved targeting through use of an external magnetic field to direct delivery of magnetically-tagged stem cells to the injury site would allow for smaller doses to be used.
We present a model for delivery of stem cells implanted with a fixed number of magnetic nanoparticles under the action of an external magnetic field. We examine the effect of magnet geometry and strength on therapy efficacy. The accuracy of the mathematical model is then verified against experimental data provided by our collaborators at the University of Birmingham.

Wed, 27 Feb 2019
11:00
N3.12

Applying Distributional Compositional Categorical Models of Meaning to Language Translation

Brian Tyrrell
(University of Oxford)
Abstract

In 2010 Coecke, Sadrzadeh, and Clark formulated a new model of natural language which operates by combining the syntactics of grammar and the semantics of individual words to produce a unified ''meaning'' of sentences. This they did by using category theory to understand the component parts of language and to amalgamate the components together to form what they called a ''distributional compositional categorical model of meaning''. In this talk I shall introduce the model of Coecke et. al., and use it to compare the meaning of sentences in Irish and in English (and thus ascertain when a sentence is the translation of another sentence) using a cosine similarity score.

The Irish language is a member of the Gaelic family of languages, originating in Ireland and is the official language of the Republic of Ireland.

We have a diverse department membership from many different locations around the world.
Mon, 20 May 2019

14:15 - 15:15
L4

Stratifications and coarse moduli spaces for the stack of Higgs bundles

Eloise Hamilton
(Oxford)
Abstract

The stack of Higgs bundles of a given rank and degree over a non-singular projective curve can be stratified in two ways: according to its Higgs Harder-Narasimhan type (its instability type) and according to the Harder-Narasimhan type of the underlying vector bundle (instability type of the underlying bundle). The semistable stratum is an open stratum of the former and admits a coarse moduli space, namely the moduli space of semistable Higgs bundles. It can be constructed using Geometric Invariant Theory (GIT) and is a widely studied moduli space due to its rich geometric structure.

In this talk I will explain how recent advances in Non-Reductive GIT can be used to refine the Higgs Harder-Narasimhan and Harder-Narasimhan stratifications in such a way that each refined stratum admits a coarse moduli space. I will explicitly describe these refined stratifications and their intersection in the case of rank 2 Higgs bundles, and discuss the topology and geometry of the corresponding moduli spaces

Mon, 10 Jun 2019

14:15 - 15:15
L4

Moduli of polarised varieties via canonical Kähler metrics

Ruadhai Dervan
(Cambridge)
Abstract

Moduli spaces of polarised varieties (varieties together with an ample line bundle) are not Hausdorff in general. A basic goal of algebraic geometry is to construct a Hausdorff moduli space of some nice class of polarised varieties. I will discuss how one can achieve this goal using the theory of canonical Kähler metrics. In addition I will discuss some fundamental properties of this moduli space, for example the existence of a Weil-Petersson type Kähler metric. This is joint work with Philipp Naumann.

Maser radiation from collisionless shocks: application to astrophysical jets
Speirs, D Ronald, K Phelps, A Rigby, A Cross, J Kozlowski, P Miniati, F Oliver, M Sarkar, S Tzeferacos, P Gregori, G al., E High Power Laser Science and Engineering volume 7 (14 Mar 2019)
Subscribe to