Mon, 31 Oct 2016

16:30 - 17:30
L4

High Ericksen number and the dynamical creation of defects in nematics

Arghir Zarnescu
(Basque Center for Applied Mathematics)
Abstract


We consider the Beris-Edwards model of liquid crystal dynamics. We study a non-dimensionalisation and regime suited for the study of defect patterns, that amounts to a combined high Ericksen and high Reynolds  number regime. 
We identify some of the flow mechanisms responsible for the appearance of localized gradients that increase in time.
This is joint work with Hao Wu (Fudan).
 

Mon, 10 Oct 2016

16:00 - 17:00
L4

Homogenization of thin structures in nonlinear elasticity - periodic and non-periodic

Igor Velcic
(University of Zagreb)
Abstract

We will give the results on the models of thin plates and rods in nonlinear elasticity by doing simultaneous homogenization and dimensional reduction. In the case of bending plate we are able to obtain the models only under periodicity assumption and assuming some special relation between the periodicity of the material and thickness of the body. In the von K\'arm\'an regime of rods and plates and in the bending regime of rods we are able to obtain the models in the general non-periodic setting. In this talk we will focus on the derivation of the rod model in the bending regime without any assumption on periodicity.

Numerous processes across both the physical and biological sciences are driven by diffusion, for example transport of proteins within living cells, and some drug delivery mechanisms. Diffusion is an unguided process which is of great importance at small spatial scales.

Thu, 24 Nov 2016

16:00 - 17:30
L4

The Randomised Heston model

Jack Jacquier
(Imperial College London)
Abstract

We propose a randomised version of the Heston model--a widely used stochastic volatility model in mathematical finance--assuming that the starting point of the variance process is a random variable. In such a system, we study the small- and large-time behaviours of the implied volatility, and show that the proposed randomisation generates a short-maturity smile much steeper (`with explosion') than in the standard Heston model, thereby palliating the deficiency of classical stochastic volatility models in short time. We precisely quantify the speed of explosion of the smile for short maturities in terms of the right tail of the initial distribution, and in particular show that an explosion rate of $t^\gamma$ (gamma in [0,1/2]) for the squared implied volatility--as observed on market data--can be obtained by a suitable choice of randomisation. The proofs are based on large deviations techniques and the theory of regular variations. Joint work with Fangwei Shi (Imperial College London)

Thu, 01 Dec 2016

16:00 - 17:30
L4

A Bayesian Methodology for Systemic Risk Assessment in Financial Networks

Luitgard A. M. Veraart
(LSE)
Abstract

We develop a Bayesian methodology for systemic risk assessment in financial networks such as the interbank market. Nodes represent participants in the network and weighted directed edges represent liabilities. Often, for every participant, only the total liabilities and total assets within this network are observable. However, systemic risk assessment needs the individual liabilities. We propose a model for the individual liabilities, which, following a Bayesian approach, we then condition on the observed total liabilities and assets and, potentially, on certain observed individual liabilities. We construct a Gibbs sampler to generate samples from this conditional distribution. These samples can be used in stress testing, giving probabilities for the outcomes of interest. As one application we derive default probabilities of individual banks and discuss their sensitivity with respect to prior information included to model the network. An R-package implementing the methodology is provided. (This is joint work with Axel Gandy (Imperial College London).)

Thu, 17 Nov 2016

16:00 - 17:30
L4

The existence of densities of BSDEs

Daniel Schwarz
(UCL)
Abstract

We introduce sufficient conditions for the solution of a multi-dimensional, Markovian BSDE to have a density. We show that a system of BSDEs possesses a density if its corresponding semilinear PDE exhibits certain regularity properties, which we verify in the case of several examples.

Thu, 10 Nov 2016

16:00 - 17:30
L4

Solution of BSDEs: Error Expansion and Complexity Control.

Camilo Garcia
(UCL)
Abstract


Backward SDEs have proven to be a useful tool in mathematical finance. Their applications include the solution to various pricing and equilibrium problems in complete and incomplete markets, the estimation of value adjustments in the presence of funding costs, and the solution to many utility/risk optimisation type of problems.
In this work, we prove an explicit error expansion for the approximation of BSDEs. We focus our work on studying the cubature  method of solution. To profit fully from these expansions in this case, e.g. to design high order approximation methods, we need in addition to control the complexity growth of the base algorithm. In our work, this is achieved by using a sparse grid representation. We present several numerical results that confirm the efficiency of our new method. Based on joint work with J.F. Chassagneux.
 

Thu, 27 Oct 2016

16:00 - 17:30
L4
Subscribe to