What goes on inside the mind of a mathematician? Where does inspiration come from? In this lecture, based on his book of the same title, Cédric Villani describes how he encountered obstacles and setbacks, losses of faith and even brushes with madness as he wrestled with a new theorem that culminated in him winning the most prestigious prize in mathematics, the Fields Medal.

 

 

Tue, 09 Jun 2015

12:30 - 13:30
Oxford-Man Institute

Markets are Efficient if and only if P=NP

Philip Maymin
(NYU)
Abstract

I prove that if markets are weak-form efficient, meaning current prices fully reflect all information available in past prices, then P = NP, meaning every computational problem whose solution can be verified in polynomial time can also be solved in polynomial time. I also prove the converse by showing how we can "program" the market to solveNP-complete problems. Since P probably does not equal NP, markets are probably not efficient. Specifically, markets become increasingly inefficient as the time series lengthens or becomes more frequent. An illustration by way of partitioning the excess returns to momentum strategies based on data availability confirms this prediction.

For more info please visit: http://philipmaymin.com/academic-papers#pnp

Mon, 08 Jun 2015

17:00 - 18:00
L4

Shock Development in Spherical Symmetry

Andre Lisibach
(ETH Zurich)
Abstract

The general problem of shock formation in three space dimensions was solved by Christodoulou in 2007. In his work also a complete description of the maximal development of the initial data is provided. This description sets up the problem of continuing the solution beyond the point where the solution ceases to be regular. This problem is called the shock development problem. It belongs to the category of free boundary problems but in addition has singular initial data because of the behavior of the solution at the blowup surface. In my talk I will present the solution to this problem in the case of spherical symmetry. This is joint work with Demetrios Christodoulou.

Wed, 22 Apr 2015
14:00
C4

Understanding crack patterns: mud, lava, permafrost and crocodiles

Lucas Goehring
(Max Planck Institute)
Abstract

Contraction cracks form captivating patterns such as those seen in dried mud or the polygonal networks that cover the polar regions of Earth and Mars. These patterns can be controlled, for example in the artistic craquelure sometimes found in pottery glazes. More practically, a growing zoo of patterns, including parallel arrays of cracks, spiral cracks, wavy cracks, lenticular or en-passant cracks, etc., are known from simple experiments in thin films – essentially drying paint – and are finding application in surfaces with engineered properties. Through such work we are also learning how natural crack patterns can be interpreted, for example in the use of dried blood droplets for medical or forensic diagnosis, or to understand how scales develop on the heads of crocodiles.

I will discuss mud cracks, how they form, and their use as a simple laboratory analogue system. For flat mud layers I will show how sequential crack formation leads to a rectilinear crack network, with cracks meeting each other at roughly 90°. By allowing cracks to repeatedly form and heal, I will describe how this pattern evolves into a hexagonal pattern. This is the origin of several striking real-world systems: columnar joints in starch and lava; cracks in gypsum-cemented sand; and the polygonal terrain in permafrost. Finally, I will turn to look at crack patterns over uneven substrates, such as paint over the grain of wood, or on geophysical scales involving buried craters, and identify when crack patterns are expected to be dominated by what lies beneath them. In exploring all these different situations I will highlight the role of energy release in selecting the crack patterns that are seen.

Thu, 04 Jun 2015

16:00 - 17:00
L4

Time-consistent stopping under decreasing impatience

Yu-Jui Huang
(Dublin City University)
Abstract

We present a dynamic theory for time-inconsistent stopping problems. The theory is developed under the paradigm of expected discounted
payoff, where the process to stop is continuous and Markovian. We introduce equilibrium stopping policies, which are imple-mentable
stopping rules that take into account the change of preferences over time. When the discount function induces decreasing impatience, we
establish a constructive method to find equilibrium policies. A new class of stopping problems, involving equilibrium policies, is
introduced, as opposed to classical optimal stopping. By studying the stopping of a one-dimensional Bessel process under hyperbolic discounting, we illustrate our theory in an explicit manner.

Thu, 28 May 2015

16:00 - 17:00
L4

Counterparty credit risk measurement: dependence effects, mitigating clauses and gap risk

Gianluca Fusai
(City University)
Abstract

In this talk, we aim to provide a valuation framework for counterparty credit risk based on a structural default model which incorporates jumps and dependence between the assets of interest. In this framework default is caused by the firm value falling below a prespecified threshold following unforeseeable shocks, which deteriorate its liquidity and ability to meet its liabilities. The presence of dependence between names captures wrong-way risk and right-way risk effects. The structural model traces back to Merton (1974), who considered only the possibility of default occurring at the maturity of the contract; first passage time models starting from the seminal contribution of Black and Cox (1976) extend the original framework to incorporate default events at any time during the lifetime of the contract. However, as the driving risk process used is the Brownian motion, all these models suffers of vanishing credit spreads over the short period - a feature not observed in reality. As a consequence, the Credit Value Adjustment (CVA) would be underestimated for short term deals as well as the so-called gap risk, i.e. the unpredictable loss due to a jump event in the market. Improvements aimed at resolving this issue include for example random default barriers, time dependent volatilities, and jumps. In this contribution, we adopt Lévy processes and capture dependence via a linear combination of two independent Lévy processes representing respectively the systematic risk factor and the idiosyncratic shock. We then apply this framework to the valuation of CVA and DVA related to equity contracts such as forwards and swaps. The main focus is on the impact of correlation between entities on the value of CVA and DVA, with particular attention to wrong-way risk and right-way risk, the inclusion of mitigating clauses such as netting and collateral, and finally the impact of gap risk. Particular attention is also devoted to model calibration to market data, and development of adequate numerical methods for the complexity of the model considered.

 
This is joint work with 
Laura Ballotta (Cass Business School, City University of London) and 
Daniele Marazzina (Department of Mathematics, Politecnico of Milan).
Thu, 14 May 2015

16:00 - 17:00
L2

Clearing the Jungle of Stochastic Optimization

Professor Warren Powell
(Princeton University)
Abstract

Stochastic optimization for sequential decision problems under uncertainty arises in many settings, and as a result as evolved under several canonical frameworks with names such as dynamic programming, stochastic programming, optimal control, robust optimization, and simulation optimization (to name a few).  This is in sharp contrast with the universally accepted canonical frameworks for deterministic math programming (or deterministic optimal control).  We have found that these competing frameworks are actually hiding different classes of policies to solve a single problem which encompasses all of these fields.  In this talk, I provide a canonical framework which, while familiar to some, is not universally used, but should be.  The framework involves solving an objective function which requires searching over a class of policies, a step that can seem like mathematical hand waving.  We then identify four fundamental classes of policies, called policy function approximations (PFAs), cost function approximations (CFAs), policies based on value function approximations (VFAs), and lookahead policies (which themselves come in different flavors).  With the exception of CFAs, these policies have been widely studied under names that make it seem as if they are fundamentally different approaches (policy search, approximate dynamic programming or reinforcement learning, model predictive control, stochastic programming and robust optimization).  We use a simple energy storage problem to demonstrate that minor changes in the nature of the data can produce problems where each of the four classes might work best, or a hybrid.  This exercise supports our claim that any formulation of a sequential decision problem should start with a recognition that we need to search over a space of policies.

Subscribe to