Optimal-complexity and robust multigrid methods for high-order FEM
Brubeck Martinez, P
Wed, 12 Jun 2024

16:00 - 17:00
L6

The relation gap and relation lifting problems

Marco Linton
(University of Oxford)
Abstract

If \(F\) is a free group and \(F/N\) is a presentation of a group \(G\), there is a natural way to turn the abelianisation of \(N\) into a \(\mathbb ZG\)-module, known as the relation module of the presentation. The images of normal generators for \(N\) yield \(\mathbb ZG\)-module generators of the relation module, but 'lifting' \(\mathbb ZG\)-generators to normal generators cannot always be done by a result of Dunwoody. Nevertheless, it is an open problem, known as the relation gap problem, whether the relation module can have strictly fewer \(\mathbb ZG\)-module generators than \(N\) can have normal generators when \(G\) is finitely presented. In this talk I will survey what is known and what is not known about this problem and its variations and discuss some recent progress for groups with a cyclic relation module.

Classical solutions of a mean field system for pulse-coupled
oscillators: long time asymptotics versus blowup
Carrillo, J Dou, X Roux, P Zhou, Z (21 Apr 2024) http://arxiv.org/abs/2404.13703v1
Coupled $\operatorname{G}_2$-instantons
Silva, A Garcia-Fernandez, M Lotay, J Earp, H (19 Apr 2024)
Unified synthetic Ricci curvature lower bounds for Riemannian and sub-Riemannian structures Barilari, D Mondino, A Rizzi, L
Thu, 09 May 2024

17:00 - 18:00
L3

Existentially closed valued difference fields

Jan Dobrowolski
(University of Manchester)
Abstract
I will report on a joint work in progress with F. Gallinaro and R. Mennuni in which we aim to understand the (non-elementary) class of existentially closed valued difference fields (of equicharacteristic zero). As our approach relies on our earlier results with Mennuni about automorphisms of ordered abelian groups, I will start by briefly overviewing those.
EXPONENTIAL ASYMPTOTICS USING NUMERICAL RATIONAL APPROXIMATION IN LINEAR DIFFERENTIAL EQUATIONS
Lustri, C Crew, S Chapman, S The ANZIAM Journal volume 65 issue 4 285-307 (22 Apr 2024)
Thu, 13 Jun 2024

11:00 - 12:00
C3

The Ultimate Supercompactness Measure

Wojciech Wołoszyn
(University of Oxford)
Abstract

Solovay defined the inner model $L(\mathbb{R}, \mu)$ in the context of $\mathsf{AD}_{\mathbb{R}}$ by using it to define the supercompactness measure $\mu$ on $\mathcal{P}_{\omega_1}(\mathbb{R})$ naturally given by $\mathsf{AD}_{\mathbb{R}}$. Solovay speculated that stronger versions of this inner model should exist, corresponding to stronger versions of the measure $\mu$. Woodin, in his unpublished work, defined $\mu_{\infty}$ which is arguably the ultimate version of the supercompactness measure $\mu$ that Solovay had defined. I will talk about $\mu_{\infty}$ in the context of $\mathsf{AD}^+$ and the axiom $\mathsf{V} = \mathsf{Ultimate\ L}$.

https://woloszyn.org/

Subscribe to