Mon, 17 Feb 2020

16:00 - 17:00
L4

Rough solutions of the $3$-D compressible Euler equations

Qian Wang
(Oxford)
Abstract

I will talk about my work arxiv:1911.05038. We prove the local-in-time well-posedness for the solution of the compressible Euler equations in $3$-D, for the Cauchy data of the velocity, density and vorticity $(v,\varrho, \omega) \in H^s\times H^s\times H^{s'}$, $2<s'<s$. The result extends the sharp result of Smith-Tataru and Wang, established in the irrotational case, i.e $ \omega=0$, which is known to be optimal for $s>2$. At the opposite extreme, in the incompressible case, i.e. with a constant density, the result is known to hold for $ \omega\in H^s$, $s>3/2$ and fails for $s\le 3/2$, see the work of Bourgain-Li. It is thus natural to conjecture that the optimal result should be $(v,\varrho, \omega) \in H^s\times H^s\times H^{s'}$, $s>2, \, s'>\frac{3}{2}$. We view our work here as an important step in proving the conjecture. The main difficulty in establishing sharp well-posedness results for general compressible Euler flow is due to the highly nontrivial interaction between the sound waves, governed by quasilinear wave equations, and vorticity which is transported by the flow. To overcome this difficulty, we separate the dispersive part of sound wave from the transported part, and gain regularity significantly by exploiting the nonlinear structure of the system and the geometric structures of the acoustic spacetime.
 

Mon, 17 Feb 2020
12:45
L3

Rademacher Expansions and the Spectrum of 2d CFT

Jinbeom Bae
(Oxford)
Abstract


I will describe work exploring the spectrum of two-dimensional unitary conformal field theories(CFT) with no extended chiral algebra and central charge larger than one. I will revisit a classical result from analytic number theory by Rademacher, which provides an exact formula for the Fourier coefficients of modular forms of non-positive weight. Generalizing this, I will explain how we employed Rademacher's idea to study the spectral density of two-dimensional CFT of our interest. The expression is given in terms of a Rademacher expansion, which converges for nonzero spin. The implications of our spectral density to the pure gravity in AdS3 will be discussed.

Wed, 05 Feb 2020
14:00
N3.12

Introduction to Social Choice Theory

Arturo Rodriguez
((Oxford University))
Abstract

Do you feel unable to explain why maths are cool? Are you looking for fun and affordable theorems for your non-mathematician friends? This is your topic.

This talk aims to be a rigorous introduction to Social Choice Theory, a sub-branch of Game Theory with natural applications to economics, sociology and politics that tries to understand how to determine, based on the personal opinions of all individuals, the collective opinion of society. The goal is to prove the three famous and pessimistic impossibility theorems: Arrow's theorem, Gibbard's theorem and Balinski-Young's theorem. Our blunt conclusion will be that, unfortunately, there are no ideally fair social choice systems. Is there any hope yet?

Characteristics of the diffuse astrophysical electron and tau neutrino
flux with six years of IceCube high energy cascade data
Collaboration, I Aartsen, M Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Alispach, C Andeen, K Anderson, T Ansseau, I Anton, G Argüelles, C Auffenberg, J Axani, S Backes, P Bagherpour, H Bai, X V, A Barbano, A Barwick, S Bastian, B Baum, V Baur, S Bay, R Physical Review Letters
A search for IceCube events in the direction of ANITA neutrino
candidates
Collaboration, I Aartsen, M Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Alispach, C Andeen, K Anderson, T Ansseau, I Anton, G Argüelles, C Auffenberg, J Axani, S Backes, P Bagherpour, H Bai, X V, A Barbano, A Barwick, S Bastian, B Baum, V Baur, S Bay, R Beatty, J Becker, K Tjus, J BenZvi, S Berley, D Bernardini, E Besson, D Binder, G Bindig, D Blaufuss, E Blot, S Bohm, C Böser, S Botner, O Böttcher, J Bourbeau, E Bourbeau, J Bradascio, F Braun, J Bron, S Brostean-Kaiser, J Burgman, A Buscher, J Busse, R Carver, T Chen, C Cheung, E Chirkin, D Choi, S Clark, K Classen, L Coleman, A Collin, G Conrad, J Coppin, P Correa, P Cowen, D Cross, R Dave, P Clercq, C DeLaunay, J Dembinski, H Deoskar, K Ridder, S Desiati, P Vries, K Wasseige, G With, M DeYoung, T Diaz, A Díaz-Vélez, J Dujmovic, H Dunkman, M Dvorak, E Eberhardt, B Ehrhardt, T Eller, P Engel, R Evenson, P Fahey, S Fazely, A Felde, J Filimonov, K Finley, C Fox, D Franckowiak, A Friedman, E Fritz, A Gaisser, T Gallagher, J Ganster, E Garrappa, S Gerhardt, L Ghorbani, K Glauch, T Glüsenkamp, T Goldschmidt, A Gonzalez, J Grant, D Grégoire, T Griffith, Z Griswold, S Günder, M Gündüz, M Haack, C Hallgren, A Halliday, R Halve, L Halzen, F Hanson, K Haungs, A Hebecker, D Heereman, D Heix, P Helbing, K Hellauer, R Henningsen, F Hickford, S Hignight, J Hill, G Hoffman, K Hoffmann, R Hoinka, T Hokanson-Fasig, B Hoshina, K Huang, F Huber, M Huber, T Hultqvist, K Hünnefeld, M Hussain, R In, S Iovine, N Ishihara, A Jansson, M Japaridze, G Jeong, M Jero, K Jones, B Jonske, F Joppe, R Kang, D Kang, W Kappes, A Kappesser, D Karg, T Karl, M Karle, A Katz, U Kauer, M Kelley, J Kheirandish, A Kim, J Kintscher, T Kiryluk, J Kittler, T Klein, S Koirala, R Kolanoski, H Köpke, L Kopper, C Kopper, S Koskinen, D Kowalski, M Krings, K Krückl, G Kulacz, N Kurahashi, N Kyriacou, A Lanfranchi, J Larson, M Lauber, F Lazar, J Leonard, K Leszczyńska, A Leuermann, M Liu, Q Lohfink, E Mariscal, C Lu, L Lucarelli, F Lünemann, J Luszczak, W Lyu, Y Ma, W Madsen, J Maggi, G Mahn, K Makino, Y Mallik, P Mallot, K Mancina, S Mariş, I Maruyama, R Mase, K Maunu, R McNally, F Meagher, K Medici, M Medina, A Meier, M Meighen-Berger, S Merino, G Meures, T Micallef, J Mockler, D Momenté, G Montaruli, T Moore, R Morse, R Moulai, M Muth, P Nagai, R Naumann, U Neer, G Niederhausen, H Nisa, M Nowicki, S Nygren, D Pollmann, A Oehler, M Olivas, A O'Murchadha, A O'Sullivan, E Palczewski, T Pandya, H Pankova, D Park, N Peiffer, P Heros, C Philippen, S Pieloth, D Pieper, S Pinat, E Pizzuto, A Plum, M Porcelli, A Price, P Przybylski, G Raab, C Raissi, A Rameez, M Rauch, L Rawlins, K Rea, I Rehman, A Reimann, R Relethford, B Renschler, M Renzi, G Resconi, E Rhode, W Richman, M Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Rysewyk, D Safa, I Herrera, S Sandrock, A Sandroos, J Santander, M Sarkar, S Satalecka, K Schaufel, M Schieler, H Schlunder, P Schmidt, T Schneider, A Schneider, J Schröder, F Schumacher, L Sclafani, S Seunarine, S Shefali, S Silva, M Snihur, R Soedingrekso, J Soldin, D Song, M Spiczak, G Spiering, C Stachurska, J Stamatikos, M Stanev, T Stein, R Stettner, J Steuer, A Stezelberger, T Stokstad, R Stößl, A Strotjohann, N Stürwald, T Stuttard, T Sullivan, G Taboada, I Tenholt, F Ter-Antonyan, S Terliuk, A Tilav, S Tollefson, K Tomankova, L Tönnis, C Toscano, S Tosi, D Trettin, A Tselengidou, M Tung, C Turcati, A Turcotte, R Turley, C Ty, B Unger, E Elorrieta, M Usner, M Vandenbroucke, J Driessche, W Eijk, D Eijndhoven, N Santen, J Verpoest, S Vraeghe, M Walck, C Wallace, A Wallraff, M Wandkowsky, N Watson, T Weaver, C Weindl, A Weiss, M Weldert, J Wendt, C Werthebach, J Whelan, B Whitehorn, N Wiebe, K Wiebusch, C Wille, L Williams, D Wills, L Wolf, M Wood, J Wood, T Woschnagg, K Wrede, G Xu, D Xu, X Xu, Y Yanez, J Yodh, G Yoshida, S Yuan, T Zöcklein, M The Astrophysical Journal: an international review of astronomy and astronomical physics http://arxiv.org/abs/2001.01737v1
Tue, 10 Mar 2020
12:00
L4

The central sphere of a gravitational instanton

Prof Nigel Hitchin
(Oxford)
Abstract

The asymptotically locally Euclidean Ricci-flat self-dual 4-manifolds were classified and constructed by Kronheimer as hyperkahler quotients. Each belongs to a finite-dimensional family and a particularly interesting subfamily consists of manifolds with a circle action which can be identified with the minimal resolution of a quotient singularity C^2/G where G is a finite subgroup of SU(2). The resolved singularity is a configuration of rational curves and there is a distinguished one which is pointwise fixed by the circle action. The talk will give an explicit description of the induced metric on this central sphere, and involves twistor theory and the geometry of the lines on a cubic surface.
 

Tue, 18 Feb 2020
14:00
L6

On the size of subsets of F_p^n without p distinct elements summing to zero

Lisa Sauermann
(Stanford)
Abstract

Let us fix a prime $p$. The Erdős-Ginzburg-Ziv problem asks for the minimum integer $s$ such that any collection of $s$ points in the lattice $\mathbb{Z}^n$ contains $p$ points whose centroid is also a lattice point in $\mathbb{Z}^n$. For large $n$, this is essentially equivalent to asking for the maximum size of a subset of $\mathbb{F}_p^n$ without $p$ distinct elements summing to zero.

In this talk, we discuss a new upper bound for this problem for any fixed prime $p\geq 5$ and large $n$. Our proof uses the so-called multi-colored sum-free theorem which is a consequence of the Croot-Lev-Pach polynomial method, as well as some new combinatorial ideas.

Tue, 04 Feb 2020
14:00
L6

An asymptotic version of the prime power conjecture

Sarah Peluse
(Oxford)
Abstract

A subset $D$ of a finite cyclic group $\mathbb{Z}/m\mathbb{Z}$ is called a "perfect difference set" if every nonzero element of $\mathbb{Z}/m\mathbb{Z}$ can be written uniquely as the difference of two elements of $D$. If such a set exists, then a simple counting argument shows that $m=n^2+n+1$ for some nonnegative integer $n$. Singer constructed examples of perfect difference sets in $\mathbb{Z}/(n^2+n+1)\mathbb{Z}$ whenever $n$ is a prime power, and it is an old conjecture that these are the only such $n$ for which $\mathbb{Z}/(n^2+n+1)\mathbb{Z}$ contains a perfect difference set. In this talk, I will discuss a proof of an asymptotic version of this conjecture.

Subscribe to