Tue, 26 Nov 2019
16:00
N3.12

The local-to-global property for Morse quasi-geodesics

Davide Spriano
(ETH Zurich)
Abstract

An important property of Gromov hyperbolic spaces is the fact that every path for which all sufficiently long subpaths are quasi-geodesics is itself a quasi-geodesic. Gromov showed that this property is actually a characterization of hyperbolic spaces. In this talk, we will consider a weakened version of this local-to-global behaviour, called the Morse local-to-global property. The class of spaces that satisfy the Morse local-to-global property include several examples of interest, such as CAT(0) spaces, Mapping Class Groups, fundamental groups of closed 3-manifolds and more. The leverage offered by knowing that a space satisfies this property allows us to import several results and techniques from the theory of hyperbolic groups. In particular, we obtain results relating to stable subgroups, normal subgroups and algorithmic properties.

Mon, 02 Dec 2019

15:45 - 16:45
L3

Areas-of-areas on Hall trees generate the shuffle algebra

CRIS SALVI
(University of Oxford)
Abstract

We consider the coordinate-iterated-integral as an algebraic product on the shuffle algebra, called the (right) half-shuffle product. Its anti-symmetrization defines the biproduct  area(.,.), interpretable as the signed-area between two real-valued coordinate paths. We consider specific sets of binary, rooted trees known as Hall sets. These set have a complex combinatorial structure, which can be almost entirely circumvented by introducing the equivalent notion of Lazard sets. Using analytic results from dynamical systems and algebraic results from the theory of Lie algebras, we show that shuffle-polynomials in areas-of-areas on Hall trees generate the shuffle algebra.

For centuries, engineers have sought to prevent structures from buckling under heavy loads or large impacts, constructing ever larger buildings and safer vehicles. However, recent advances in soft matter are redefining the way we manipulate materials. In particular, an age-old aversion to buckling is being recast in a new light as researchers find that structural instabilities can be harnessed for functionality.

Energy production is arguably one of the most important factors underlying modern civilisation. Energy allows us to inhabit inhospitable parts of the Earth in relative comfort (using heating and air conditioning), create large cities (by efficiently transporting food and pumping water), or maintain our health (providing the energy for water purification). It also connects people by allowing long-distance travel and facilitating digital communication.

Fri, 13 Mar 2020

14:00 - 15:00
L6

Lava flows: theory, laboratory experiments and field data

Herbert Huppert
(University of Cambridge)
Abstract

World wide, unconstrained lava flows kill people almost each year and cause extensive damage, costing millions of pounds. Defending against lava flows is possible by using topographic variations sensibly, placing buildings considerately, constructing defending walls of appropriate size and the like. Hinton, Hogg and Huppert have recently published three rather mathematical papers outlining how viscous flows down slopes interact with a variety of geometrical shapes; evaluating, in particular, the conditions under which “dry zones” form – safe places for people and belongings – and the size of a protective wall required to defend a given size building.

Following a desktop experimental demonstration, we will discuss these analyses and their consequences.

Fri, 28 Feb 2020

14:00 - 15:00
L6

TBA

Thu, 21 Nov 2019

16:00 - 17:00
C5

Non-commutative counting and stability

Arkadij Bojko
Abstract

G. Dimitrov and L. Katzarkov introduced in their paper from 2016 the counting of non-commutative curves and their (semi-)stability using T. Bridgeland's stability conditions on triangulated categories. To some degree one could think of this as the non-commutative analog of Gromov-Witten theory. However, its full meaning has not yet been fully discovered. For example there seems to be a relation to proving Markov's conjecture. 

For the talk, I will go over the definitions of stability conditions, non-commutative curves and their counting. After developing some tools relying on working with exceptional collections, I will consider the derived category of representations on the acyclic triangular quiver and will talk about the explicit computation of the invariants for this example.

Mon, 24 Feb 2020

14:15 - 15:15
L4

Higgs bundles and higher Teichmüller components

Oscar Garcia-Prada
(CSIC Madrid)
Abstract

It is well-known that the Teichmüller space of a compact surface can be identified with a connected component of the moduli space of representations of the fundamental group of the surface in PSL(2,R). Higher Teichmüller components are generalizations of this that exist for the moduli space of representations of the fundamental group into certain real simple Lie groups of higher rank. As for the usual Teichmüller space, these components consist entirely  of discrete and faithful representations. Several cases have been identified over the years. First, the Hitchin components for split groups, then the maximal Toledo invariant components for Hermitian groups, and more recently certain components for SO(p,q). In this talk, I will describe a general construction of (still somewhat conjecturally) all possible Teichmüller components, and a parametrization of them using Higgs bundles.

Mon, 03 Feb 2020

14:15 - 15:15
L4

Homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds

Christoph Bohm
(Münster)
Abstract

We  show that homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds, using that they admit periodic, integrally minimal foliations by homogeneous hypersurfaces. For the geometric flow induced by the orbit-Einstein condition, we construct a Lyapunov function based on curvature estimates which come from real GIT.

Subscribe to