14:15
Tame fundamental groups of rigid spaces
Abstract
The fundamental group of a complex variety is finitely presented. The talk will survey algebraic variants (in fact, distant corollaries) of this fact, in the context of variants of the etale fundamental group. We will then zoom in on "tame" etale fundamental groups of p-adic analytic spaces. Our main result is that it is (topologically) finitely generated (for a quasi-compact and quasi-separated rigid space over an algebraically closed field). The proof uses logarithmic geometry beyond its usual scope of finitely generated monoids to (eventually) reduce the problem to the more classical one of finite generation of tame fundamental groups of algebraic varieties over the residue field. This is joint work with Katharina Hübner, Marcin Lara, and Jakob Stix.
How to warm-start your unfolding network
Abstract
We present a new ensemble framework for boosting the performance of overparameterized unfolding networks solving the compressed sensing problem. We combine a state-of-the-art overparameterized unfolding network with a continuation technique, to warm-start a crucial quantity of the said network's architecture; we coin the resulting continued network C-DEC. Moreover, for training and evaluating C-DEC, we incorporate the log-cosh loss function, which enjoys both linear and quadratic behavior. Finally, we numerically assess C-DEC's performance on real-world images. Results showcase that the combination of continuation with the overparameterized unfolded architecture, trained and evaluated with the chosen loss function, yields smoother loss landscapes and improved reconstruction and generalization performance of C-DEC, consistently for all datasets.
On Objective-Free High Order Methods
Abstract
An adaptive regularization algorithm for unconstrained nonconvex optimization is presented in
which the objective function is never evaluated, but only derivatives are used and without prior knowledge of Lipschitz constant. This algorithm belongs to the class of adaptive regularization methods, for which optimal worst-case complexity results are known for the standard framework where the objective function is evaluated. It is shown in this paper that these excellent complexity bounds are also valid for the new algorithm. Theoretical analysis of both exact and stochastic cases are discussed and new probabilistic conditions on tensor derivatives are proposed. Initial experiments on large binary classification highlight the merits of our method.
14:15
Laplacian spectra of minimal submanifolds in the hyperbolic space
Abstract
16:00
Graph manifolds and their Thurston norm
Abstract
A classical approach to studying the topology of a manifold is through the analysis of its submanifolds. The realm of 3-manifolds is particularly rich and diverse, and we aim to explore the complexity of surfaces within a given 3-manifold. After reviewing the fundamental definitions of the Thurston norm, we will present a constructive method for computing it on Seifert fibered manifolds and extend this approach to graph manifolds. Finally, we will outline which norms can be realized as the Thurston norm of some graph manifold and examine their key properties.
16:00
Rank-one symmetric spaces and their quasiisometries
Abstract
The hyperbolic plane and its higher-dimensional analogues are well-known
objects. They belong to a larger class of spaces, called rank-one
symmetric spaces, which include not only the hyperbolic spaces but also
their complex and quaternionic counterparts, and the octonionic
hyperbolic plane. By a result of Pansu, two of these families exhibit
strong rigidity properties with respect to their self-quasiisometries:
any self-quasiisometry of a quaternionic hyperbolic space or the
octonionic hyperbolic plane is at uniformly bounded distance from an
isometry. The goal of this talk is to give an overview of the rank-one
symmetric spaces and the tools used to prove Pansu's rigidity theorem,
such as the subRiemannian structure of their visual boundaries and the
analysis of quasiconformal maps.
16:00
Semi-regular tilings and the d-chromatic number of the hyperbolic plane
Abstract
Originally posed in the 1950s, the Hadwiger-Nelson problem interrogates the ‘chromatic number of the plane’ via an infinite unit-distance graph. This question remains open today, known only to be 5,6, or 7. We may ask the same question of the hyperbolic plane; there the lack of homogeneous dilations leads to unique behaviour for each length scale d. This variance leads to other questions: is the d-chromatic number finite for all d>0? How does the d-chromatic number behave as d increases/decreases? In this talk, I will provide a summary of existing methods and results, before discussing improved bounds through the consideration of semi-regular tilings of the hyperbolic plane.
16:00
Introduction to Congruence Subgroup Property
Abstract
Congruence Subgroup Property is a characterisation of finite-index subgroups of automorphism groups. It first arose from the study of subgroups of linear groups. In this talk, I will show a few examples where it holds and where it fails, and give an overview of what is known about the family $SL_n\mathbb{Z}$, $Out(F_n)$, $MCG(\Sigma)$. Then I will describe some related results in the case of Mapping Class Groups, and explain their relation to profinite rigidity of 3-manifolds.
16:00
Skein Lasagna Modules
Abstract
Donaldson proved that there are pairs of 4-manifolds that are homeomorphic but not diffeomorphic, a phenomenon that does not appear for any lower dimensional manifolds. Until recently, proving this for compact manifolds has required smooth 4-manifold invariants coming from gauge theory. In this talk, we will give an introduction to an exciting new smooth 4-manifold invariant of Morrison Walker and Wedich, called a skein lasagna module that does not rely on gauge theory. Further, this talk will not assume any knowledge of 4-manifold topology.