Mon, 18 Mar 2019
15:45
C4

Algebraic cobordism categories and Grothendieck-Witt-theory

Fabian Hebestreit
(University of Bonn)
Abstract

I will explain how Lurie‘s approach to L-theory via Poincaré categories can be extended to yield cobordism categories of Poincaré objects à la Ranicki. These categories can be delooped by an iterated Q-construction and the resulting spectrum is a derived version of Grothendieck-Witt-theory.  Its homotopy type can be described in terms of K- and L-theory as conjectured by Hesselholt-Madsen. Furthermore, it has a clean universal property analogous to that of K-theory, localisation sequences in much greater generality than classical Grothendieck-Witt theory, gives a cycle description of Weiss-Williams‘ LA-theory and allows for maps from the geometric cobordism category, refining and unifying various known invariants.

All original material is joint work with B.Calmès, E.Dotto, Y.Harpaz, M.Land, K.Moi, D.Nardin, T.Nikolaus and W.Steimle.

Mon, 18 Mar 2019
14:15
C4

Invariants for sublinearly biLipschitz equivalence

Gabriel Pallier
(Université Paris-Sud 11)
Abstract


The large-scale features of groups and spaces are recorded by asymptotic invariants. Examples of asymptotic invariants are the asymptotic cone and, for hyperbolic groups, the Gromov boundary.
In his study of asymptotic cones of connected Lie groups, Yves Cornulier introduced a class of maps called sublinearly biLipschitz equivalences. Like the more traditionnal quasiisometries, sublinearly biLipschitz equivalences are biLipschitz on the large-scale, but unlike quasiisometries, they are generally not coarse. Sublinearly biLipschitz equivalences still induce biLipschitz homeomorphisms between asymptotic cones. In this talk, I will focus on Gromov-hyperbolic groups and show how the Gromov boundary can be used to produce invariants distinguishing them up to sublinearly biLipschitz equivalences when the asymptotic cones do not. I will especially give applications to the large-scale sublinear geometry of hyperbolic Lie groups.
 

Thu, 09 May 2019
16:00
C4

Orientability of moduli spaces of coherent sheaves on Calabi–Yau 4-folds

Jacob Gross
(Oxford University)
Abstract

Gauge-theoretic invariants such as Donaldson or Seiberg–Witten invariants of 4-manifolds, Casson invariants of 3-manifolds, Donaldson–Thomas invariants of Calabi–Yau 3- and 4-folds, and putative Donaldson–Segal invariants of G_2 manifolds are defined by constructing a moduli space of solutions to an elliptic PDE as a (derived) manifold and integrating the (virtual) fundamental class against cohomology classes. For a moduli space to have a (virtual) fundamental class it must be compact, oriented, and (quasi-)smooth. We first describe a general framework for addressing orientability of gauge-theoretic moduli spaces due to Joyce–Tanaka–Upmeier. We then show that the moduli stack of perfect complexes of coherent sheaves on a Calabi–Yau 4-fold X is a homotopy-theoretic group completion of the topological realisation of the moduli stack of algebraic vector bundles on X. This allows one to extend orientations on the locus of algebraic vector bundles to the boundary of the (compact) moduli space of coherent sheaves using the universal property of homotopy-theoretic group completions. This is a necessary step in constructing Donaldson–Thomas invariants of Calabi–Yau 4-folds. This is joint work with Yalong Cao and Dominic Joyce.

Mon, 29 Apr 2019

14:15 - 15:15
L4

Einstein 4-manifolds, negative curvature and smoothing cones

Joel Fine
(Universite Libre de Bruxelles)
Abstract

I will describe joint work with Bruno Premoselli which gives a new existence theorem for negatively curved Einstein 4-manifolds, which are obtained by smoothing the singularities of hyperbolic cone metrics. Let (M_k) be a sequence of compact 4-manifolds and let g_k be a hyperbolic cone metric on M_k with cone angle \alpha (independent of k) along a smooth surface S_k. We make the following assumptions:

1. The injectivity radius i(k) of M_k tends to infinity (where in defining injectivity radius we ignore those geodesics which hit the cone singularity)

2. The normal injectivity radius of S_k is at least i(k)/2.

3. The area of the singular locii satisfy A(S_k)\leq C \exp(5 i(k)/2) for some C independent of k.

When these assumptions hold, we prove that for all large k, M_k carries a smooth Einstein metric of negative curvature. The proof involves a gluing theorem and a parameter dependent implicit function theorem (where k is the parameter). As I will explain, negative curvature plays an essential role in the proof. (For those who may be aware of our arxiv preprint, https://arxiv.org/abs/1802.00608 [arxiv.org], the work
I will describe has a new feature, namely we now treat all cone angles, and not just those which are greater than 2\pi. This gives lots more examples of Einstein 4-manifolds.)

 

 

Tue, 28 May 2019

12:00 - 13:15
L4

The Swampland, Holography and the Large Volume Scenario

Joseph Conlon
(Oxford)
Abstract

String compactifications are essential for connecting string theory to low energy particle physics and cosmology. Moduli stabilisation gives rise to effective Lagrangians that capture the low-energy degrees of freedom. Much recent interest has been on swampland consistency conditions on such effective
field theories - which low energy Lagrangians can arise from quantum gravity? Furthermore, given that moduli stabilisation scenarios often exist in AdS space, we can also ask: what do swampland conditions mean in the context of AdS/CFT? I describe work on developing a holographic understanding of moduli stabilisation and swampland consistency conditions. I focus in particular on the Large Volume Scenario, which is especially appealing from a holographic perspective as in the large volume limit all its interactions can be expressed solely in terms of the AdS radius, with no free dimensionless parameters.

 

Tue, 14 May 2019

12:00 - 13:15
L4

Local operators in integrable quantum field theories

Henning Bostelmann
(York)
Abstract


Integrable models provide simplified examples of quantum field theories with self-interaction. As often in relativistic quantum theory, their local observables are difficult to control mathematically. One either tries to construct pointlike local quantum fields, leading to possibly divergent series expansions, or one defines the local observables indirectly via wedge-local quantities, losing control over their explicit form.

We propose a new, hybrid approach: We aim to describe local quantum fields; but rather than exhibiting their n-point functions and verifying the Wightman axioms, we establish them as closed operators affiliated with a net of von Neumann algebras. This is shown to work at least in the Ising model.

 

Tue, 11 Jun 2019

12:00 - 13:15
L4

Vacuum polarization on topological black holes

Elizabeth Winstanley
(Sheffield)
Abstract

The renormalized expectation value of the stress energy tensor (RSET) is an object of central importance in quantum field theory in curved space-time, but calculating this on black hole space-times is far from trivial.  The vacuum polarization (VP) of a quantum scalar field is computationally simpler and shares some features with the RSET.  In this talk we consider the properties of the VP for a massless, conformally coupled scalar field on asymptotically anti-de Sitter black holes with spherical, flat and hyperbolic horizons.  We focus on the effect of the different horizon curvature on the VP, and the role played by the boundary conditions far from the black hole.     

 

Tue, 30 Apr 2019

14:00 - 15:15
L4

Single electron entanglement and the Aharonov-Bohm Effect

Vlatko Vedral
(Oxford)
Further Information

Please note the change of time (just this week)

Abstract

I will review the idea that entanglement must ultimately be understood in terms of modes, rather than in terms of particles. The most striking instance of mode entanglement is a single particle entangled state, which I will discuss both in the case of bosons as well as in the case of fermions. I then proceed to show that the Aharonov-Bohm effect can be understood by using a single electron entangled state. Finally, I will argue that this demonstrates beyond doubt that the Aharonov-Bohm effect is non non-local, contrary to what is frequently claimed in the literature.

 

Oxford Mathematics Visiting Fellow and Reader in Applied Mathematics at the University of Bath, Apala Majumdar has been awarded the 2019 FDM Everywoman in Tech Academic Award. This is awarded to a woman in academia who has made an outstanding contribution to technology and science and whose work has made or has the potential to make a significant long-term impact in STEM.

Subscribe to