Mon, 28 May 2018

16:00 - 17:00
L4

Quantitative estimates for advective equation with degenerate anelastic constraint

Didier Bresch
(Universite de Savoie)
Abstract

In this work with P.--E. Jabin, we are interested in quantitative estimates for advective equations with an anelastic constraint in presence of vacuum. More precisely, we derive a stability estimate and obtain the existence of renormalized solutions. The method itself introduces weights which sole a dual equation and allow to propagate appropriatly weighted norms on the initial solution. In a second time, a control on where those weights may vanish allow to deduce global and precise quantitative regularity estimates.

Tue, 07 Nov 2017

15:45 - 16:45
L4

Jumps and motivic invariants of semiabelian Jacobians

Otto Overkamp
(Imperial College)
Abstract

We investigate Néron models of Jacobians of singular curves over strictly Henselian discretely valued fields, and their behaviour under tame base change. For a semiabelian variety, this behaviour is governed by a finite sequence of (a priori) real numbers between 0 and 1, called "jumps". The jumps are conjectured to be rational, which is known in some cases. The purpose of this paper is to prove this conjecture in the case where the semiabelian variety is the Jacobian of a geometrically integral curve with a push-out singularity. Along the way, we prove the conjecture for algebraic tori which are induced along finite separable extensions, and generalize Raynaud's description of the identity component of the Néron model of the Jacobian of a smooth curve (in terms of the Picard functor of a proper, flat, and regular model) to our situation. The main technical result of this paper is that the exact sequence which decomposes the Jacobian of one of our singular curves into its toric and Abelian parts extends to an exact sequence of Néron models. Previously, only split semiabelian varieties were known to have this property.

Mon, 04 Dec 2017
15:45
L6

The bipolar filtration of topologically slice knots

Min Hoon Kim
(Korea Institute for Advances Study)
Abstract

The bipolar filtration of Cochran, Harvey and Horn initiated the study of deeper structures of the smooth concordance group of the topologically slice knots. We show that the graded quotient of the bipolar filtration has infinite rank at each stage greater than one. To detect nontrivial elements in the quotient, the proof uses higher order amenable Cheeger-Gromov $L^2$ $\rho$-invariants and infinitely many Heegaard Floer correction term $d$-invariants simultaneously. This is joint work with Jae Choon Cha.

Subscribe to