Tue, 22 Apr 2025
14:00
L4

Minimal degenerations for quiver varieties

Gwyn Bellamy
(University of Glasgow)
Abstract

For any symplectic singularity, one can consider the minimal degenerations between symplectic leaves - these are the relative singularities of a pair of adjacent leaves in the closure relation. I will describe a complete classification of these minimal degenerations for Nakajima quiver varieties. It provides an effective algorithm for computing the associated Hesse diagrams. In the physics literature, it is known that this Hasse diagram can be computed using quiver subtraction. Our results appear to recover this process. I will explain applications of our results to the question of normality of leaf closures in quiver varieties. The talk is based on joint work in progress with Travis Schedler.

Tue, 03 Dec 2024
14:00
L5

Gecia Bravo-Hermsdorff: What is the variance (and skew, kurtosis, etc) of a network? Graph cumulants for network analysis

Gecia Bravo-Hermsdorff
(University College London)
Abstract

Topically, my goal is to provide a fun and instructive introduction to graph cumulants: a hierarchical set of subgraph statistics that extend the classical cumulants (mean, (co)variance, skew, kurtosis, etc) to relational data.  

Intuitively, graph cumulants quantify the propensity (if positive) or aversion (if negative) for the appearance of any particular subgraph in a larger network.  

Concretely, they are derived from the “bare” subgraph densities via a Möbius inversion over the poset of edge partitions.  

Practically, they offer a systematic way to measure similarity between graph distributions, with a notable increase in statistical power compared to subgraph densities.  

Algebraically, they share the defining properties of cumulants, providing clever shortcuts for certain computations.  

Generally, their definition extends naturally to networks with additional features, such as edge weights, directed edges, and node attributes.  

Finally, I will discuss how this entire procedure of “cumulantification” suggests a promising framework for a motif-centric statistical analysis of general structured data, including temporal and higher-order networks, leaving ample room for exploration. 

Combing carbon fibre arrays
Howell, P Ockendon, H Ockendon, J Roberts, J Partial Differential Equations in Applied Mathematics volume 13 (06 Dec 2024)
Ordinals arising as residual finiteness depths
Bridson, M (12 Nov 2024)
Introducing the JFM ‘outstanding reviewers’ initiative
Waters, S Caulfield, C Journal of Fluid Mechanics volume 999 (22 Nov 2024)
Collaboratively probing the universe
Sarkar, S de Wolf, E Europhysics news volume 55 issue 5 14-14 (19 Nov 2024)
Wed, 04 Dec 2024
16:00
L6

Tambara-Yamagami Fusion Categories

Adrià Marín-Salvador
(University of Oxford)
Abstract

In this talk, I will introduce fusion categories as categorical versions of finite rings. We will discuss some examples which may already be familiar, like the category of representations of a finite group and the category of vector spaces graded over a finite group. Then, we will define Tambara-Yamagami categories, which are a certain type of fusion categories which have one simple object which is non-invertible. I will provide the classification results of Tambara and Yamagami on these categories and give some small examples. Time permitting, I will discuss current work in progress on how to generalize Tambara-Yamagami fusion categories to locally compact groups. 

This talk will not assume familiarity with category theory further than the definition of a category and a functor.

Immersions of Directed Graphs in Tournaments
Girão, A Hancock, R Random Structures and Algorithms volume 66 issue 1 (20 Jan 2025)
B-twisted Gaiotto-Witten theory and topological quantum field theory
Garner, N Geer, N Young, M Communications in Mathematical Physics (11 Jan 2025)
Mirror Symmetry and Level-rank Duality for 3d $\mathcal{N} = 4$ Rank 0 SCFTs
Creutzig, T Garner, N Kim, H (31 May 2024)
Subscribe to