15:45
Koszul duality patterns in Floer theory
Abstract
We study symplectic invariants of the open symplectic manifolds X
obtained by plumbing cotangent bundles of spheres according to a
plumbing tree. We prove that certain models for the Fukaya category F(X)
of closed exact Lagrangians in X and the wrapped Fukaya category W(X)
are related by Koszul duality. As an application, we give explicit
computations of symplectic cohomology essentially for all trees. This is
joint work with Tolga Etg\"u.
15:45
Graphical calculus for 3-dimensional TQFTs
Abstract
Recent developments in 3-dimensional topological quantum field theory allow us to understand the vector spaces assigned to surfaces as spaces of string diagrams. In the Reshetikhin-Turaev model, these string diagrams live inside a handlebody bounding the surface, while in the Turaev-Viro model, they live on the surface itself. There is a "lifting map" from the former to the latter, which sheds new light on a number of constructions. Joint with Gerrit Goosen.
15:45
A cubical flat torus theorem
Abstract
I will describe a “cubical flat torus theorem” for a group G acting properly and cocompactly on a CAT(0) cube complex.
This states that every “highest” free abelian subgroup of G acts properly and cocompactly on a convex subcomplex that is quasi-isometric to a Euclidean space.
I will describe some simple consequences, as well as the original motivation which was to prove the “bounded packing property” for cyclic subgroups of G.
This is joint work with Daniel Woodhouse.
15:45
On the combinatorics of the two-dimensional Ising model
Abstract
In the first part of this talk, we will give a very gentle introduction to the Ising model. Then , we will explain a very simple proof of a combinatorial formula for the 2D Ising model partition function using the language of Kac-Ward matrices. This approach can be used for general weighted graphs embedded in surfaces, and extends to the study of several other observables. This is a joint work with Dima Chelkak and Adrien Kassel.
15:45
Quasicircles
Abstract
If you do not know quasicircles, you will understand what they are.
If you hate quasicircles, you will change your mind.
If you already love quasicircles, they will astonish you once more.
15:45
Characterizing a vertex-transitive graph by a large ball
Abstract
It is well-known that a complete Riemannian manifold M which is locally isometric to a symmetric space is covered by a symmetric space. We will prove that a discrete version of this property (called local to global rigidity) holds for a large class of vertex-transitive graphs, including Cayley graphs of torsion-free lattices in simple Lie groups, and Cayley graph of torsion-free virtually nilpotent groups. By contrast, we will exhibit various examples of Cayley graphs of finitely presented groups (e.g. PGL(5, Z)) which fail to have this property, answering a question of Benjamini, Ellis, and Georgakopoulos. This is a joint work with Mikael de la Salle.
15:00
Quantum superposition attacks on symmetric encryption protocols
Abstract
Quantum computers derive their computational power from the ability to manipulate superposition states of quantum registers. The generic quantum attack against a symmetric encryption scheme with key length n using Grover's algorithm has O(2^(n/2)) time complexity. For this kind of attack, an adversary only needs classical access to an encryption oracle. In this talk I discuss adversaries with quantum superposition access to encryption and decryption oracles. First I review and extend work by Kuwakado and Morii showing that a quantum computer with superposition access to an encryption oracle can break the Even-Mansour block cipher with key length n using only O(n) queries. Then, improving on recent work by Boneh and Zhandry, I discuss indistinguishability notions in chosen plaintext and chosen ciphertext attacks by a quantum adversary with superposition oracle access and give constructions that achieve these security notions.
Symmetry, Spaces and Undecidability
Abstract
Symmetry, Spaces and Undecidability
Professor Martin Bridson
Martin Bridson became Head of the Mathematical Institute on 01 October 2015. To mark the occasion he will be giving an Inaugural Chairman's Public Lecture.
When one wants to describe the symmetries of any object or system, in mathematics or everyday life, the right language to use is group theory. How might one go about understanding the universe of all groups and what kinds of novel geometry might emerge as we explore this universe?
To register email @email
25 November 2015
5.00-6.00pm
Lecture Theatre 1
Mathematical Institute
Oxford
Martin Bridson is the Whitehead Professor of Pure Mathematics at the University of Oxford