Higher gradient integrability for σ -harmonic maps in dimension two
Abstract
I will present some recent results concerning the higher gradient integrability of
σ-harmonic functions u with discontinuous coefficients σ, i.e. weak solutions of
div(σ∇u) = 0. When σ is assumed to be symmetric, then the optimal integrability
exponent of the gradient field is known thanks to the work of Astala and Leonetti
& Nesi. I will discuss the case when only the ellipticity is fixed and σ is otherwise
unconstrained and show that the optimal exponent is attained on the class of
two-phase conductivities σ: Ω⊂R27→ {σ1,σ2} ⊂M2×2. The optimal exponent
is established, in the strongest possible way of the existence of so-called
exact solutions, via the exhibition of optimal microgeometries.
(Joint work with V. Nesi and M. Ponsiglione.)
Can we compute everything?
Abstract
Joint work with Anders Hansen (Cambridge), Olavi Nevalinna (Aalto) and Markus Seidel (Zwickau).
Fluids at a high Reynolds number
Abstract
I will present two recent results concerning the stability of boundary layer asymptotic expansions of solutions of Navier-Stokes with small viscosity. First, we show that the linearization around an arbitrary stationary shear flow admits an unstable eigenfunction with small wave number, when viscosity is sufficiently small. In boundary-layer variables, this yields an exponentially growing sublayer near the boundary and hence instability of the asymptotic expansions, within an arbitrarily small time, in the inviscid limit. On the other hand, we show that the Prandtl asymptotic expansions hold for certain steady flows. Our proof involves delicate construction of approximate solutions (linearized Euler and Prandtl layers) and an introduction of a new positivity estimate for steady Navier-Stokes. This in particular establishes the inviscid limit of steady flows with prescribed boundary data up to order of square root of small viscosity. This is a joint work with Emmanuel Grenier and Yan Guo.
On quantitative compactness estimates for hyperbolic conservation laws and Hamilton-Jacobi equations
Abstract
Inspired by a question posed by Lax, in recent years it has received an increasing attention the study of quantitative compactness estimates for the solution operator $S_t$, $t>0$ that associates to every given initial data $u_0$ the corresponding solution $S_t u_0$ of a conservation law or of a first order Hamilton-Jacobi equation. Estimates of this type play a central roles in various areas of information theory and statistics as well as of ergodic and learning theory. In the present setting, this concept could provide a measure of the order of ``resolution'' of a numerical method for the corresponding equation. In this talk we shall first review the results obtained in collaboration with O. Glass and K.T. Nguyen, concerning the compactness estimates for solutions to conservation laws. Next, we shall turn to the analysis of the Hamilton-Jacobi equation pursued in collaboration with P. Cannarsa and K.T.~Nguyen.
Approximate current-vortex sheets near the onset of instability
Abstract
In this talk I present a recent result about the free-boundary problem for 2D current-vortex sheets in ideal incompressible magneto-hydrodynamics near the transition point between the linearized stability and instability. In order to study the dynamics of the discontinuity near the onset of the instability, Hunter and Thoo have introduced an asymptotic quadratically nonlinear integro-differential equation for the amplitude of small perturbations of the planar discontinuity. We study such amplitude equation and prove its nonlinear well-posedness under a stability condition given in terms of a longitudinal strain of the fluid along the discontinuity. This is a joint work with A.Morando and P.Trebeschi.
Construction of a macroscopic model of phase-transformation for the modeling of superelastic Shape Memory Alloys
Abstract
Expansion, Random Walks and Sieving in SL_2(F_p[t])
Abstract
Expansion, Random Walks and Sieving in $SL_2 (\mathbb{F}_p[t])$
We pose the question of how to characterize "generic" elements of finitely generated groups. We set the scene by discussing recent results for linear groups in characteristic zero. To conclude we describe some new work in positive characteristic.
11:00
'Model-completeness for Henselian valued fields with finite ramification'
Abstract
This is joint work with Angus Macintyre. We prove a general model-completeness theorem for Henselian valued fields
stating that a Henselian valued field of characteristic zero with value group a Z-group and with finite ramification is model-complete in the language of rings provided that its residue field is model-complete. We apply this to extensions of p-adic fields showing that any finite or infinite extension of p-adics with finite ramification is model-complete in the language of rings.
Wooley's approach to the Vinogradov Mean Value Theorem
Abstract
The talk will discuss the mean value theorem and Wooley's breakthrough with his "efficent congruencing" method.