varieties, and unstable cohomology of $\mathrm{GL}_g(\mathbb{Z})$ and
$\mathrm{SL}_g(\mathbb{Z})$
Junior Algebra Social
Abstract
We will kick off the start of the academic year and the Junior Algebra and Representation Theory seminar (JART) with a fun social event in the common room. Come catch up with your fellow students about what happened over the summer, meet the new students and play some board games. We'll go for lunch together afterwards.
Universality in Persistence Diagrams and Applications
Primoz Skraba is a Senior Lecturer in Applied and Computational Topology. His research is broadly related to data analysis with an emphasis on topological data analysis. Generally, the problems he considers span both theory and applications. On the theory side, the areas of interest include stability and approximation of algebraic invariants, stochastic topology (the topology of random spaces), and algorithmic research. On the applications side, he focuses on combining topological ideas with machine learning, optimization, and other statistical tools. Other applications areas of interest include visualization and geometry processing.
He received a PhD in Electrical Engineering from Stanford University in 2009 and has held positions at INRIA in France and the Jozef Stefan Institute, the University of Primorska, and the University of Nova Gorica in Slovenia, before joining Queen Mary University of London in 2018. He is also currently a Fellow at the Alan Turing Institute.
Abstract
In this talk, I will present joint work with Omer Bobrowski: a series of statements regarding the behaviour of persistence diagrams arising from random point-clouds. I will present evidence that, viewed in the right way, persistence values obey a universal probability law, that depends on neither the underlying space nor the original distribution of the point-cloud. I will present two versions of this universality: “weak” and “strong” along with progress which has been made in proving the statements. Finally, I will also discuss some applications of this phenomena based on detecting structure in data.
16:00
Careers outside academia
Abstract
What opportunities are available outside of academia? What skills beyond strong academic background are companies looking for to be successful in transitioning to industry? Come along and hear from video technology company V-Nova and Dr Anne Wolfes from the Careers Service to get some invaluable advice on careers outside academia.
16:00
North meets South
Abstract
Speaker: Lasse Grimmelt (North Wing)
Title: Modular forms and the twin prime conjecture
Abstract: Modular forms are one of the most fruitful areas in modern number theory. They play a central part in Wiles proof of Fermat's last theorem and in Langland's far reaching vision. Curiously, some of our best approximations to the twin-prime conjecture are also powered by them. In the existing literature this connection is highly technical and difficult to approach. In work in progress on this types of questions, my coauthor and I found a different perspective based on a quite simple idea. In this way we get an easy explanation and good intuition why such a connection should exists. I will explain this in this talk.
Speaker: Yang Liu (South Wing)
Title: Obtaining Pseudo-inverse Solutions With MINRES
Abstract: The celebrated minimum residual method (MINRES) has seen great success and wide-spread use in solving linear least-squared problems involving Hermitian matrices, with further extensions to complex symmetric settings. Unless the system is consistent whereby the right-hand side vector lies in the range of the matrix, MINRES is not guaranteed to obtain the pseudo-inverse solution. We propose a novel and remarkably simple lifting strategy that seamlessly integrates with the final MINRES iteration, enabling us to obtain the minimum norm solution with negligible additional computational costs. We also study our lifting strategy in a diverse range of settings encompassing Hermitian and complex symmetric systems as well as those with semi-definite preconditioners.