Topological QFTs (Part II)
Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link.
Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link.
Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link.
Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link.
Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link.
Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link.
(Joint with Y. Halevi and A. Hasson.) We consider two kinds of expansions of a valued field $K$:
(1) A $T$-convex expansion of real closed field, for $T$ a polynomially bounded o-minimal expansion of $K$.
(2) A $P$-minimal field $K$ in which definable functions are PW differentiable.
We prove that any interpretable infinite field $F$ in $K$ is definably isomorphic to a finite extension of either $K$ or, in case (1), its residue field $k$. The method we use bypasses general elimination of imaginaries and is based on analysis of one dimensional quotients of the form $I=K/E$ inside $F$ and their connection to one of 4 possible sorts: $K$, $k$ (in case (1)), the value group, or the quotient of $K$ by its valuation ring. The last two cases turn out to be impossible and in the first two cases we use local differentiability to embed $F$ into the matrix ring over $K$ (or $k$).
We survey some of the applications of generalized indiscernible sequences, both in model theory and in structural Ramsey theory. Given structures $A$ and $B$, a semi-retraction is a pair of quantifier-free type respecting maps $f: A \rightarrow B$ and $g: B \rightarrow A$ such that $g \circ f: A \rightarrow A$ is quantifier-free type preserving, i.e. an embedding. In the case that $A$ and $B$ are locally finite ordered structures, if $A$ is a semi-retraction of $B$ and the age of $B$ has the Ramsey property, then the age of $A$ has the Ramsey property.
The index of a saddle point of a smooth function is the number of descending directions of the saddle. While the index can usually be retrieved by counting the number of negative eigenvalues of the Hessian at the critical point, we may not have the luxury of having second derivatives in data deriving from practical applications. To address this problem, we develop a computational pipeline for estimating the index of a non-degenerate saddle point without explicitly computing the Hessian. In our framework, we only require a sufficiently dense sample of level sets of the function near the saddle point. Using techniques in Morse theory and Topological Data Analysis, we show how the shape of saddle points can help us infer the index of the saddle. Furthermore, we derive an explicit upper bound on the density of point samples necessary for inferring the index depending on the curvature of level sets.