Thu, 21 May 2020

16:00 - 17:00

An Equilibrium Model of the Limit Order Book: a Mean-field Game approach

EunJung NOH
(Rutgers University)
Abstract

 

We study a continuous time equilibrium model of limit order book (LOB) in which the liquidity dynamics follows a non-local, reflected mean-field stochastic differential equation (SDE) with evolving intensity. We will see that the frontier of the LOB (e.g., the best ask price) is the value function of a mean-field stochastic control problem, as the limiting version of a Bertrand-type competition among the liquidity providers.
With a detailed analysis on the N-seller static Bertrand game, we formulate a continuous time limiting mean-field control problem of the representative seller.
We then validate the dynamic programming principle (DPP) and show that the value function is a viscosity solution of the corresponding Hamilton-Jacobi-Bellman (HJB) equation.
We argue that the value function can be used to obtain the equilibrium density function of the LOB. (Joint work with Jin Ma)

Thu, 28 May 2020

16:00 - 17:00

Robust uncertainty sensitivity quantification

Johannes Wiesel
((Oxford University))
Abstract

 

We consider sensitivity of a generic stochastic optimization problem to model uncertainty. We take a non-parametric approach and capture model uncertainty using Wasserstein balls around the postulated model. We provide explicit formulae for the first order correction to both the value function and the optimizer and further extend our results to optimization under linear constraints.  We present applications to statistics, machine learning, mathematical finance and uncertainty quantification. In particular, we prove that LASSO leads to parameter shrinkage, propose measures to quantify robustness of neural networks to adversarial examples and compute sensitivities of optimised certainty equivalents in finance. We also propose extensions of this framework to a multiperiod setting. This talk is based on joint work with Daniel Bartl, Samuel Drapeau and Jan Obloj.

Fri, 22 May 2020

10:00 - 11:00
Virtual

The mathematics of beam-forming optimisation with antenna arrays in 5G communication systems

Keith Briggs
(BT)
Further Information

A discussion session will follow the workshop and those interested are invited to stay in the meeting for the discussions.

Abstract

Modern cellular radio systems such as 4G and 5G use antennas with multiple elements, a technique known as MIMO, and the intention is to increase the capacity of the radio channel.  5G allows even more possibilities, such as massive MIMO, where there can be hundreds of elements in the transmit antenna, and beam-forming (or beam-steering), where the phase of the signals fed to the antenna elements is adjusted to focus the signal energy in the direction of the receivers.  However, this technology poses some difficult optimization problems, and here mathematicians can contribute.   In this talk I will explain the background, and then look at questions such as: what is an appropriate objective function?; what constraints are there?; are any problems of this type convex (or quasi-convex, or difference-of-convex)?; and, can big problems of this type be solved in real time?

Mon, 25 May 2020

16:00 - 17:00

Infinitely regularizing paths, and regularization by noise.

Fabian Harang
(University of Oslo)
Abstract

 

Abstract: 

In this talk I will discuss regularization by noise from a pathwise perspective using non-linear Young integration, and discuss the relations with occupation measures and local times. This methodology of pathwise regularization by noise was originally proposed by Gubinelli and Catellier (2016), who use the concept of averaging operators and non-linear Young integration to give meaning to certain ill posed SDEs. 

In a recent work together with   Nicolas Perkowski we show that there exists a class of paths with exceptional regularizing effects on ODEs, using the framework of Gubinelli and Catellier. In particular we prove existence and uniqueness of ODEs perturbed by such a path, even when the drift is given as a Scwartz distribution. Moreover, the flow associated to such ODEs are proven to be infinitely differentiable. Our analysis can be seen as purely pathwise, and is only depending on the existence of a sufficiently regular occupation measure associated to the path added to the ODE. 

As an example, we show that a certain type of Gaussian processes has infinitely differentiable local times, whose paths then can be used to obtain the infinitely regularizing effect on ODEs. This gives insight into the powerful effect that noise may have on certain equations. I will also discuss an ongoing extension of these results towards regularization of certain PDE/SPDEs by noise.​

Mon, 01 Jun 2020

16:00 - 17:00

A martingale approach for fractional Brownian motions and related path dependent PDEs

Frederi Viens
(Michigan State University)
Abstract


We study dynamic backward problems, with the computation of conditional expectations as a special objective, in a framework where the (forward) state process satisfies a Volterra type SDE, with fractional Brownian motion as a typical example. Such processes are neither Markov processes nor semimartingales, and most notably, they feature a certain time inconsistency which makes any direct application of Markovian ideas, such as flow properties, impossible without passing to a path-dependent framework. Our main result is a functional Itô formula, extending the Functional Ito calculus to our more general framework. In particular, unlike in the Functional Ito calculus, where one needs only to consider stopped paths, here we need to concatenate the observed path up to the current time with a certain smooth observable curve derived from the distribution of the future paths.  We then derive the path dependent PDEs for the backward problems. Finally, an application to option pricing and hedging in a financial market with rough volatility is presented.

Joint work with JianFeng Zhang (USC).

Mon, 11 May 2020

16:00 - 17:00

Weierstrass bridges

Alexander Schied
(University of Waterloo Canada)
Abstract


Many classical fractal functions, such as the Weierstrass and Takagi-van der Waerden functions, admit a finite p-th variation along a natural sequence of partitions. They can thus serve as integrators in pathwise Itô calculus. Motivated by this observation, we
introduce a new class of stochastic processes, which we call Weierstrass bridges. They have continuous sample paths and arbitrarily low regularity and so provide a new example class of “rough” stochastic processes. We study some of their sample path properties
including p-th variation and moduli of continuity. This talk includes joint work with Xiyue Han and Zhenyuan Zhang.

 

Mon, 04 May 2020

16:00 - 17:00

Connecting Generative adversarial networks with Mean Field Games

Xin Guo
(Berkeley, USA)
Abstract


Generative Adversarial Networks (GANs) have celebrated great empirical success, especially in image generation and processing. Meanwhile, Mean-Field Games (MFGs),  as analytically feasible approximations for N-player games, have experienced rapid growth in theory of controls. In this talk, we will discuss a new theoretical connections between GANs and MFGs. Interpreting MFGs as GANs, on one hand, allows us to devise GANs-based algorithm to solve MFGs. Interpreting GANs as MFGs, on the other hand, provides a new and probabilistic foundation for GANs. Moreover, this interpretation helps establish an analytical connection between GANs and Optimal Transport (OT) problems, the connection previously understood mostly from the geometric perspective. We will illustrate by numerical examples of using GANs to solve high dimensional MFGs, demonstrating its superior performance over existing methodology.

Mon, 11 May 2020

16:00 - 17:00
Virtual

Lie brackets for non-smooth vector fields

Franco Rampazzo
(University of Padova)
Abstract

For a given vector field $h$ on a manifold $M$ and an initial point $x \in M$, let $t \mapsto \exp th(x)$ denote the solution to the Cauchy problem $y' = h(y)$, $y(0) = x$. Given two vector fields $f$, $g$, the flows $\exp(tf)$, $\exp(tg)$ in general are not commutative. That is, it may happen that, for some initial point $x$,

$$\exp(-tg) \circ \exp(-tf) \circ \exp(tg) \circ \exp(tf) (x) ≠ x,$$

for small times $t ≠ 0$.

         As is well-known, the Lie bracket $[f,g] := Dg \cdot f - Df \cdot g$ measures the local non-commutativity of the flows. Indeed, one has (on any coordinate chart)

$$\exp(-tg) \circ \exp(-tf) \circ \exp(tg) \circ \exp(tf) (x) - x = t^2 [f,g](x) + o(t^2)$$

         The non-commutativity of vector fields lies at the basis of many nonlinear issues, like propagation of maxima for solutions of degenerate elliptic PDEs, controllability sufficient conditions in Nonlinear Control Theory, and higher order necessary conditions for optimal controls. The fundamental results concerning commutativity (e.g. Rashevski-Chow's Theorem, also known as Hörmander's full rank condition, or Frobenius Theorem) assume that the vector fields are smooth enough for the involved iterated Lie brackets to be well defined and continuous: for instance, if the bracket $[f,[g,h]]$ is to be used, one posits $g,h \in C^2$ and $f \in C^{1..}$.

         We propose a notion of (set-valued) Lie bracket (see [1]-[3]), through which we are able to extend some of the mentioned fundamental results to families of vector fields whose iterated brackets are just measurable and defined almost everywhere.

 

References.

[1]  Rampazzo, F. and Sussmann, H., Set-valued differentials and a nonsmooth version of Chow’s Theorem (2001), Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida, 2001 (IEEE Publications, New York), pp. 2613-2618.

[2] Rampazzo F.  and Sussmann, H.J., Commutators of flow maps of nonsmooth vector fields (2007), Journal of Differential Equations, 232, pp. 134-175.

[3] Feleqi, E. and Rampazzo, F., Iterated Lie brackets for nonsmooth vector fields (2017), Nonlinear Differential Equations and Applications NoDEA, 24-6.

 

Mon, 25 May 2020
12:45
Virtual

Symplectic duality and implosion -- ZOOM SEMINAR

Andrew Dancer
(University of Oxford)
Abstract

We discuss hyperkahler implosion spaces, their relevance to group actions and why they should fit into the symplectic duality picture. For certain groups we present candidates for the symplectic duals of the associated implosion spaces and provide computational evidence. This is joint work with Amihay Hanany and Frances Kirwan.
 

Mon, 08 Jun 2020
12:45
Virtual

Branes and the Swampland -- ZOOM SEMINAR

Hee-Cheol Kim
(POSTECH Pohang)
Abstract

I will talk about a novel idea on the Swampland program that uses consistency of what lives on the string probes in gravitational theories. The central charges and the levels of current algebras of 2d CFTs on these strings can be calculated by anomaly inflow mechanism and used to provide constraints on the supergravity theories based on unitarity of the worldsheet CFT. I will show some of the theories with 8 or 16 supersymmetries, which are otherwise consistent looking, belong to the Swampland.

Subscribe to