Thu, 19 Oct 2017

16:00 - 17:30
L4

Bounds for VIX Futures Given S&P 500 Smiles

Julien Guyon
(Bloomberg New York)
Abstract

We derive sharp bounds for the prices of VIX futures using the full information of S&P 500 smiles. To that end, we formulate the model-free sub/superreplication of the VIX by trading in the S&P 500 and its vanilla options as well as the forward-starting log-contracts. A dual problem of minimizing/maximizing certain risk-neutral expectations is introduced and shown to yield the same value. The classical bounds for VIX futures given the smiles only use a calendar spread of log-contracts on the S&P 500. We analyze for which smiles the classical bounds are sharp and how they can be improved when they are not. In particular, we introduce a tractable family of functionally generated portfolios which often improves the classical spread while still being tractable, more precisely, determined by a single concave/convex function on the line. Numerical experiments on market data and SABR smiles show that the classical lower bound can be improved dramatically, whereas the upper bound is often close to optimal.

Thu, 12 Oct 2017

16:00 - 17:30
L4

Closing The Loop of Optimal Trading: a Mean Field Game of Controls

Charles-Albert Lehalle
(CFM (France))
Abstract

This talk explains how to formulate the now classical problem of optimal liquidation (or optimal trading) inside a Mean Field Game (MFG). This is a noticeable change since usually mathematical frameworks focus on one large trader in front of a " background noise " (or " mean field "). In standard frameworks, the interactions between the large trader and the price are a temporary and a permanent market impact terms, the latter influencing the public price. Here the trader faces the uncertainty of fair price changes too but not only. He has to deal with price changes generated by other similar market participants, impacting the prices permanently too, and acting strategically. Our MFG formulation of this problem belongs to the class of " extended MFG ", we hence provide generic results to address these " MFG of controls ", before solving the one generated by the cost function of optimal trading. We provide a closed form formula of its solution, and address the case of " heterogenous preferences " (when each participant has a different risk aversion). Last but not least we give conditions under which participants do not need to instantaneously know the state of the whole system, but can " learn " it day after day, observing others' behaviors.

Thu, 13 Jul 2017
13:30
C1

The universal triangle-free graph has finite big Ramsey degrees

Natasha Dobrinen
(Denver)
Abstract

A main part of the proof uses forcing to establish a Ramsey theorem on a new type of tree, though the result holds in ZFC.  The space of such trees almost forms a topological Ramsey space.

Wed, 07 Feb 2018

17:00 - 18:00
L1

Michael Bonsall - Scaling the Maths of Life

Michael Bonsall
(University of Oxford)
Abstract

In this talk Michael Bonsall will explore how we can use mathematics to link between scales of organisation in biology. He will delve in to developmental biology, ecology and neurosciences, all illustrated and explored with real life examples, simple games and, of course, some neat maths.

Michael Bonsall is Professor of Mathematical Biology in Oxford.

7 February 2018, 5pm-6pm, Mathematical Institute, Oxford

Please email @email to register or watch online: https://livestream.com/oxuni/bonsall

Thu, 17 May 2018

17:00 - 18:00
L1

Michael Atiyah - Numbers are Serious but they are also Fun

Michael Atiyah
(University of Edinburgh)
Abstract

Archimedes, who famously jumped out of his bath shouting "Eureka", also invented $\pi$. 

Euler invented $e$ and had fun with his formula $e^{2\pi i} = 1$

The world is full of important numbers waiting to be invented. Why not have a go ?

Michael Atiyah is one of the world's foremost mathematicians and a pivotal figure in twentieth and twenty-first century mathematics. His lecture will be followed by an interview with Sir John Ball, Sedleian Professor of Natural Philosophy here in Oxford where Michael will talk about his lecture, his work and his life as a mathematician.

Please email @email to register.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

As part of our series of research articles deliberately focusing on the rigour and intricacies of mathematics, we look at Oxford Mathematician Minyhong Kim's research in to the relationship between number theory and topology. Minhyong Kim is Professor of Number Theory here in Oxford and Fellow of Merton College.

It is probably well-known that number theory is the source of some of the oldest and most accessible questions in mathematics:

Subscribe to