Thu, 13 Oct 2016

16:00 - 17:30
L3

OCIAM Group Meeting

Graham Benham, Nabil Fadai
(University of Oxford)
Abstract

Graham Benham

The Fluid Mechanics of Low-Head Hydropower Illuminated by Particle Image Velocimetry

We study a new type of hydropower which is cost-effective in rivers and tides where there are small pressure drops. The concept goes as follows: The cost of water turbines scales with the flow rate they deal with.  Therefore, in order to render this hydropower desirable, we make use of the Venturi principle, a natural fluid mechanical gear system which involves splitting the flow into two streams. The turbine deals with a small fraction of the flow at slow speed and high pressure, whilst the majority avoids the turbine, going at high speed and low pressure. Now the turbine feels an amplified pressure drop, thus maintaining its power output, whilst becoming much cheaper. But it turns out that the efficiency of the whole system depends strongly on the way in which these streams mix back together again.

Here we discuss some new experimental results and compare them to a simplified mathematical model for the mixing of these streams. The experimental results were achieved using particle image velocimetry (PIV), which is a type of flow visualisation. Using a laser sheet and a high speed camera, we are able to capture flow velocity fields at high resolution. Pressure measurements were also taken. The mathematical model is derived from the Navier Stokes equations using boundary layer theory alongside a flow-averaging method and reduces the problem to solving a set of ODE’s for the bulk components of the flow.

 

Nabil Fadai

Asymptotic Analysis of a Multiphase Drying Model Motivated by Coffee Bean Roasting

Recent modelling of coffee bean roasting suggests that in the early stages of roasting, within each coffee bean, there are two emergent regions: a dried outer region and a saturated interior region. The two regions are separated by a transition layer (or drying front). In this talk, we consider the asymptotic analysis of a multiphase model of this roasting process which was recently put forth and studied numerically, in order to gain a better understanding of its salient features. The model consists of a PDE system governing the thermal, moisture, and gas pressure profiles throughout the interior of the bean. Obtaining asymptotic expansions for these quantities in relevant limits of the physical parameters, we are able to determine the qualitative behaviour of the outer and interior regions, as well as the dynamics of the drying front. Although a number of simplifications and scaling are used, we take care not to discard aspects of the model which are fundamental to the roasting process. Indeed, we find that for all of the asymptotic limits considered, our approximate solutions faithfully reproduce the qualitative features evident from numerical simulations of the full model. From these asymptotic results we have a better qualitative understanding of the drying front (which is hard to resolve precisely in numerical simulations), and hence of the various mechanisms at play as heating, evaporation, and pressure changes result in a roasted bean. This qualitative understanding of solutions to the multiphase model is essential if one is to create more involved models that incorporate chemical reactions and solid mechanics effects.

Mon, 25 Apr 2016

16:00 - 17:00
L4

The decay of solutions of Maxwell-Klein-Gordon equations

Shiwu Yang
(Cambridge)
Abstract

It has been shown that there are global solutions to 
Maxwell-Klein-Gordon equations in Minkowski space with finite energy 
data. However, very little is known about the asymptotic behavior of the 
solution. In this talk, I will present recent progress on the decay 
properties of the solutions. We show the quantitative energy flux decay 
of the solutions with data merely bounded in some weighted energy space. 
The results in particular hold in the presence of large total charge. 
This is the first result that gives a complete and precise description 
of the global behavior of large nonlinear fields.
 

Tue, 01 Mar 2016

15:00 - 16:00
L1

A "Simple" Answer to a "Not Quite Simple" Problem - The Prequel to A "Simple" Question

Kesavan Thanagopal
(Oxford University)
Abstract

In this seminar, I aim to go through the "main prequel" of the talk I gave during the first Advanced Class of this term, and provide a "simple" answer to Abraham Robinson's original question that he posed in 1973 regarding the (un)decidability of finitely generated extensions of undecidable fields. I will provide a quick introduction to, and some classical results from, the mathematical discipline of Field Arithmetic, and using these results show that one can construct undecidable (large) fields that have finitely generated extensions which are decidable. Of course, as I had mentioned in the advanced class, a counterexample to the "simple" question that I have been working on unfortunately does not seem to lie within this class of large fields. If time permits, I will provide a sneak peek into the possible "sequel" by briefly talking about what the main issue of solving the "simple" problem is, and how a "hide-and-seek" method might come in handy in tackling that problem.

Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array
Felde, J Filimonov, K Finley, C Fischer-Wasels, T Flis, S Foesig, C Fuchs, T Gaisser, T Gaior, R Gallagher, J Gerhardt, L Ghorbani, K Gier, D Gladstone, L Glagla, M Gluesenkamp, T Goldschmidt, A Golup, G Gonzalez, J Gora, D Grant, D Griffith, Z Gross, A Ha, C Haack, C Journal of Cosmology and Astroparticle Physics volume 2016 issue 1 037-037 (20 Jan 2016)
High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube
Sarkar, S Physical Review D volume 93 issue 12 122010 (01 Jun 2016)
Fri, 04 Mar 2016

15:30 - 16:30
L2

Hurricanes and Climate Change

Professor Kerry Emanuel
(MIT)
Abstract

In his talk, Kerry will explore the pressing practical problem of how hurricane activity will respond to global warming, and how hurricanes could in turn be influencing the atmosphere and ocean

Wed, 02 Mar 2016

16:00 - 17:00
C3

Group Cohomology and Quasi-Isometries

Alex Margolis
(Oxford)
Abstract

I will present a basic overview of finiteness conditions, group cohomology, and related quasi-isometry invariance results. In particular, I will show that if a group satisfies certain finiteness conditions, group cohomology with group ring coefficients encodes some structure of the `homology at infinity' of a group. This is seen for hyperbolic groups in the work of Bestvina-Mess, which relates the group cohomology to the Čech cohomology of the boundary.

Tue, 03 May 2016
14:30
L3

Optimal preconditioners for systems defined by functions of Toeplitz matrices

Sean Hon
(University of Oxford)
Abstract

We propose several optimal preconditioners for systems defined by some functions $g$ of Toeplitz matrices $T_n$. In this paper we are interested in solving $g(T_n)x=b$ by the preconditioned conjugate method or the preconditioned minimal residual method, namely in the cases when $g(T_n)$ are the analytic functions $e^{T_n}$, $\sin{T_n}$ and $\cos{T_n}$. Numerical results are given to show the effectiveness of the proposed preconditioners.

Subscribe to