Tue, 16 Feb 2021

14:00 - 15:00
Virtual

FFTA: Public risk perception and emotion on Twitter during the Covid-19 pandemic

Joel Dyer and Blas Kolic
(Institute for New Economic Thinking)
Abstract

Successful navigation of the Covid-19 pandemic is predicated on public cooperation with safety measures and appropriate perception of risk, in which emotion and attention play important roles. Signatures of public emotion and attention are present in social media data, thus natural language analysis of this text enables near-to-real-time monitoring of indicators of public risk perception. We compare key epidemiological indicators of the progression of the pandemic with indicators of the public perception of the pandemic constructed from ∼20 million unique Covid-19-related tweets from 12 countries posted between 10th March and 14th June 2020. We find evidence of psychophysical numbing: Twitter users increasingly fixate on mortality, but in a decreasingly emotional and increasingly analytic tone. Semantic network analysis based on word co-occurrences reveals changes in the emotional framing of Covid-19 casualties that are consistent with this hypothesis. We also find that the average attention afforded to national Covid-19 mortality rates is modelled accurately with the Weber–Fechner and power law functions of sensory perception. Our parameter estimates for these models are consistent with estimates from psychological experiments, and indicate that users in this dataset exhibit differential sensitivity by country to the national Covid-19 death rates. Our work illustrates the potential utility of social media for monitoring public risk perception and guiding public communication during crisis scenarios.

Fri, 05 Feb 2021

14:00 - 15:00
Virtual

Presheaves on buildings and computing modular representations

Mark Butler
(University of Birmingham)
Abstract

Buildings are geometric structures useful in understanding certain classes of groups. In a series of papers written during the 1980s, Ronan and Smith developed the theory of “presheaves on buildings”. By constructing a coefficient system consisting of kP-modules (where P is the stabiliser of a given simplex), and computing the sheaf homology, they proved several results relating the homology spaces with the irreducible G-modules. In this talk we discuss their methods as well as our implementation of the algorithms, which has allowed us to efficiently compute the irreducible representations of some groups of Lie type.

Fri, 29 Jan 2021
16:00
Virtual

M2 and D3 branes wrapped on a spindle

Pietro Ferrero
(University of Oxford)
Abstract

We consider the Plebanski-Demianski family of solutions of minimal gauged supergravity in D=4, which describes an accelerating, rotating and charged black-hole in AdS4. The 4d metric has conical singularities, but we show that it can uplifted to a completely regular solution of D=11 supergravity. We focus on the supersymmetric and extremal case, where the near-horizon geometry is AdS2x\Sigma, where \Sigma is a spindle, or weighted projective space. We argue that this is dual to a d=1, N=(2,0) SCFT which is the IR limit of a 3d SCFT compactified on a spindle. This, in turn, should be realized holographically by wrapping a stack of M2-branes on a spindle. Such construction displays two interesting features: 1) supersymmetry is realized in a novel way, which is not the topological twist, and 2) the R-symmetry of the d=1 SCFT mixes with the U(1) isometry of the spindle, even in the absence of rotation. A similar idea also applies to a class of AdS3x\Sigma solutions of minimal gauged supergravity in D=5.

We are delighted to announce PROMYS Europe Connect for 2021, online from 12 July to 6 August.

In view of continuing restrictions and uncertainty around Covid-19, we are designing PROMYS Europe Connect as a unique 4-week online programme that captures many of the key elements of the usual PROMYS Europe experience. PROMYS Europe is a challenging mathematics summer programme based at the University of Oxford, UK.

Mon, 15 Feb 2021

16:00 - 17:00

Thermal boundaries for energy superdiffusion

STEFANO OLLA
(Ceremade Dauphin)
Abstract

We consider a chain of oscillators with one particle in contact with a thermostat at temperature T. The thermostat is modeled by a Langevin dynamics or a renewal of the velocity with a gaussian random variable with variance T. The dynamics of the oscillators is perturbed by a random exchange on velocities between nearest neighbor particles.
The (thermal) energy has a macroscopic superdiffusive behavior governed by a fractional heat equation (i.e. with a fractional Laplacian). The microscopic thermostat impose a particular boundary condition to the fractional Laplacian, corresponding to certain probabilities of transmission/reflection/absorption/creation for the corresponding superdiffusive Levy process.
This is from a series of works in collaboration with Tomazs Komorowski, Lenya Ryzhik, Herbert Spohn.

Mon, 08 Feb 2021

16:00 - 17:00
Virtual

Symmetry and uniqueness via a variational approach

Yao Yao
(Giorgia Tech)
Abstract

For some nonlocal PDEs, its steady states can be seen as critical points of an associated energy functional. Therefore, if one can construct perturbations around a function such that the energy decreases to first order along the perturbation, this function cannot be a steady state. In this talk, I will discuss how this simple variational approach has led to some recent progresses in the following equations, where the key is to carefully construct a suitable perturbation.

I will start with the aggregation-diffusion equation, which is a nonlocal PDE driven by two competing effects: nonlinear diffusion and long-range attraction. We show that all steady states are radially symmetric up to a translation (joint with Carrillo, Hittmeir and Volzone), and give some criteria on the uniqueness/non-uniqueness of steady states within the radial class (joint with Delgadino and Yan).

I will also discuss the 2D Euler equation, where we aim to understand under what condition must a stationary/uniformly-rotating solution be radially symmetric. Using a variational approach, we settle some open questions on the radial symmetry of rotating patches, and also show that any smooth stationary solution with compactly supported and nonnegative vorticity must be radial (joint with Gómez-Serrano, Park and Shi).

Tue, 26 Jan 2021
16:00
Virtual

Symbol Alphabets from Plabic Graphs

Anders Schreiber
(Mathematical Institute (University of Oxford))
Abstract

Symbol alphabets of n-particle amplitudes in N=4 super-Yang-Mills theory are known to contain certain cluster variables of Gr(4,n) as well as certain algebraic functions of cluster variables. In this talk we suggest an algorithm for computing these symbol alphabets from plabic graphs by solving matrix equations of the form C.Z = 0 to associate functions on Gr(m,n) to parameterizations of certain cells of Gr_+ (k,n) indexed by plabic graphs. For m=4 and n=8 we show that this association precisely reproduces the 18 algebraic symbol letters of the two-loop NMHV eight-point amplitude from four plabic graphs. We further show that it is possible to obtain all rational symbol letters (in fact all cluster variables) by solving C.Z = 0 if one allows C to be an arbitrary cluster parameterization of the top cell of Gr_+ (n-4,n).

Tue, 16 Feb 2021

17:00 - 18:30

Spacetime Singularities - Roger Penrose, Dennis Lehmkuhl & Melvyn Bragg

(University of Oxford and University of Bonn)
Further Information

Oxford Mathematics Online Public Lecture in Partnership with Wadham College celebrating Roger Penrose's Nobel Prize

Spacetime Singularities - Roger Penrose, Dennis Lehmkuhl and Melvyn Bragg
Tuesday 16 February 2021
5.00-6.30pm

Dennis Lehmkuhl: From Schwarzschild’s singularity and Hadamard’s catastrophe to Penrose’s trapped surfaces
Roger Penrose: Spacetime singularities - to be or not to be?
Roger Penrose & Melvyn Bragg: In conversation

What are spacetime singularities? Do they exist in nature or are they artefacts of our theoretical reasoning? Most importantly, if we accept the general theory of relativity, our best theory of space, time, and gravity, do we then also have to accept the existence of spacetime singularities?

In this special lecture, Sir Roger Penrose, 2020 Nobel Laureate for Physics, will give an extended version of his Nobel Prize Lecture, describing his path to the first general singularity theorem of general relativity, and to the ideas that sprung from this theorem, notably the basis for the existence of Black Holes. He will be introduced by Dennis Lehmkuhl whose talk will describe how the concept of a spacetime singularity developed prior to Roger's work, in work by Einstein and others, and how much of a game changer the first singularity theorem really was.

The lectures will be followed by an interview with Roger by Melvyn Bragg.

Roger Penrose is the 2020 Nobel Laureate for Physics and Emeritus Rouse Ball Professor in Oxford; Dennis Lehmkuhl is Lichtenberg Professor of History and Philosophy of Physics at the University of Bonn and one of the Editors of Albert Einstein's Collected Papers: Melvyn Bragg is a broadcaster and author best known for his work as editor and presenter of the South Bank Show and In Our Time.

Watch online (no need to register - and the lecture will stay up on all channels afterwards):
Oxford Mathematics Twitter
Oxford Mathematics Facebook
Oxford Mathematics Livestream
Oxford Mathematics YouTube

The Oxford Mathematics Public Lecture are generously supported by XTX Markets

[[{"fid":"60543","view_mode":"media_397x223","fields":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-397x223","data-delta":"1"}}]]

Fri, 29 Jan 2021

14:00 - 15:00
Virtual

Representations of affine Hecke algebras and graded Hecke algebras

Ruben La
(University of Oxford)
Abstract

There is a connection between certain smooth representations of a reductive p-adic group and the representations of the Iwahori-Hecke algebra of this p-adic group. This Iwahori-Hecke algebra is a specialisation of a more general affine Hecke algebra. In this talk, we will discuss affine Hecke algebras and graded Hecke algebras. We will state a result from Lusztig (1989) that relates the representation theory of an affine Hecke algebra and a particular graded Hecke algebra and we will present a simple example of this relation.

Mon, 01 Mar 2021

16:00 - 17:00

Nonlinear Fokker=Planck equations with measure as initial data and McKean-Vlasov equations

MICHAEL ROECKNER
(Bielefeld University)
Abstract

Nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations This talk is about joint work with Viorel Barbu. We consider a class of nonlinear Fokker-Planck (- Kolmogorov) equations of type \begin{equation*} \frac{\partial}{\partial t} u(t,x) - \Delta_x\beta(u(t,x)) + \mathrm{div} \big(D(x)b(u(t,x))u(t,x)\big) = 0,\quad u(0,\cdot)=\mu, \end{equation*} where $(t,x) \in [0,\infty) \times \mathbb{R}^d$, $d \geq 3$ and $\mu$ is a signed Borel measure on $\mathbb{R}^d$ of bounded variation. In the first part of the talk we shall explain how to construct a solution to the above PDE based on classical nonlinear operator semigroup theory on $L^1(\mathbb{R}^d)$ and new results on $L^1- L^\infty$ regularization of the solution semigroups in our case. In the second part of the talk we shall present a general result about the correspondence of nonlinear Fokker-Planck equations (FPEs) and McKean-Vlasov type SDEs. In particular, it is shown that if one can solve the nonlinear FPE, then one can always construct a weak solution to the corresponding McKean-Vlasov SDE. We would like to emphasize that this, in particular, applies to the singular case, where the coefficients depend "Nemytski-type" on the time-marginal law of the solution process, hence the coefficients are not continuous in the measure-variable with respect to the weak topology on probability measures. This is in contrast to the literature in which the latter is standardly assumed. Hence we can cover nonlinear FPEs as the ones above, which are PDEs for the marginal law densities, realizing an old vision of McKean.

References V. Barbu, M. Röckner: From nonlinear Fokker-Planck equations to solutions of distribution dependent SDE, Ann. Prob. 48 (2020), no. 4, 1902-1920. V. Barbu, M. Röckner: Solutions for nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations, J. Funct. Anal. 280 (2021), no. 7, 108926.

Subscribe to