Mon, 18 Feb 2019
15:30
L1

Cross ratios on cube complexes and length-spectrum rigidity

Elia Fioravanti
(Oxford)
Abstract

A conjecture from the '80s claims that the isometry type of a closed, negatively curved Riemannian manifold should be uniquely determined by the lengths of its closed geodesics. By work of Otal, this is essentially equivalent to the problem of extending cross-ratio preserving maps between Gromov boundaries of simply connected, negatively curved manifolds. Progress on the conjecture has been remarkably slow, with only the 2-dimensional and locally symmetric cases having been solved so far (Otal '90 and Hamenstädt '99).
Still, it is natural to try leaving the world of manifolds and address the conjecture in the general context of non-positively curved metric spaces. We restrict to the class of CAT(0) cube complexes, as their geometry is both rich and well-understood. We introduce a new notion of cross ratio on their horoboundary and use it to provide a full answer to the conjecture in this setting. More precisely, we show that essential, hyperplane-essential cubulations of Gromov-hyperbolic groups are completely determined by their combinatorial length functions. One can also consider non-proper non-cocompact actions of non-hyperbolic groups, as long as the cube complexes are irreducible and have no free faces.
Joint work with J. Beyrer and M. Incerti-Medici.

Mon, 18 Feb 2019
14:15
L1

RAAGs and Stable Commutator Length

Nicolaus Heuer
(Oxford)
Abstract

Stable commutator length (scl) is a well established invariant of elements g in the commutator subgroup (write scl(g)) and has both geometric and algebraic meaning.  A group has a \emph{gap} in stable commutator length if for every non-trivial element g, scl(g) > C for some C > 0.
SCL may be interpreted as an 'algebraic translation length' and such a gap may be thus interpreted an 'algebraic injectivity radius'.
Many classes of groups have such a gap, like hyperbolic groups, mapping class groups, Baumslag-Solitar groups and graph of groups.
In this talk I will show that Right-Angled Artin Groups have the optimal scl-gap of 1/2. This yields a new invariant for the vast class of subgroups of Right-Angled Artin Groups.

Mon, 18 Feb 2019
13:15
L1

Quasi-isometric embeddings of symmetric spaces and lattices

Thang Nguyen
(Courant Institute of Mathematical Sciences)
Abstract

Symmetric spaces and lattices are important objects to model spaces in geometry and topology. They have been studied from many different viewpoints. We will concentrate on their coarse geometry view point in this talk. I will first quickly go over some well-known results about quasi-isometry of those spaces. Then I will move to the study about quasi-isometric embeddings. While results in this direction are far less complete and well-studied, there are some rigidity phenomenons still happening here.

Tue, 19 Feb 2019

14:30 - 15:00
L3

Univariate and Multivariate Polynomials in Numerical Analysis

Lloyd N. Trefethen
(Oxford)
Abstract

We begin by reviewing numerical methods for problems in one variable and find that univariate polynomials are the starting point for most of them.  A similar review in several variables, however, reveals that multivariate polynomials are not so important.  Why?  On the other hand in pure mathematics, the field of algebraic geometry is precisely the study of multivariate polynomials.  Why?

The CDT Mathematics of Random Systems offers a 4-year comprehensive training programme at the frontier of scientific research in Probability, Stochastic Analysis, Stochastic Modelling, stochastic computational methods and applications in physics, finance, biology, healthcare and data science.
Wed, 06 Feb 2019
11:00
N3.12

RSK Insertion and Symmetric Polynomials

Adam Keilthy
(University of Oxford)
Abstract

Young diagrams frequently appear in the study of partitions and representations of the symmetric group. By filling these diagrams with numbers, we obtain Young tableau, combinatorial objects onto which we can define the structure of a monoid via insertion algorithms. We will explore this structure and it's connection to a basis of the ring of symmetric polynomials. If we have time, we will mention alternative monoid structures and their corresponding bases.

Here you can explore profiles and career destinations of the course alumni.
Tue, 19 Feb 2019
12:00
L4

Mysteries of isolated horizons

Jerzy Lewandowski
(University of Warsaw)
Abstract

Mysteries of isolated horizons: the Near Horizon Geometry equation, geometric characterizations of the non-extremal Kerr horizon, spacetimes foliated by non-expanding horizons.

3-dimensional null surfaces  that are  Killing horizons to the second order  are  considered. They are embedded in 4-dimensional spacetimes that satisfy the vacuum Einstein equations with arbitrary cosmological constant. Internal geometry of 2-dimensional cross sections of  the horizons  consists of induced metric tensor and a rotation 1-form potential. It is subject to the type D equation. The equation is interesting from the both, mathematical and physical points of view. Mathematically it  involves  geometry, holomorphic structures and algebraic topology.  Physically, the equation knows the secrete of black holes: the only  axisymmetric solutions on topological sphere  correspond  to the the Kerr / Kerr-de Sitter / Kerr-anti-de-Sitter non-extremal black holes or to the near horizon limit  of the extremal ones.  In the case of bifurcated  horizons the type D equation implies another spacial  symmetry. In this way the axial symmetry may be ensured without the rigidity theorem. The type D equation does not allow rotating horizons of topology different then that of the  sphere (or its quotient). That completes a new local non-her theorem. The type D equation is also  an integrability condition for the  Near Horizon Geometry equation and leads to new results on the solution existence issue.
 

Subscribe to