Tue, 05 Jun 2018

14:00 - 15:00
L5

Finite volume element methods: An overview

Prof Sarvesh Kumar
(Indian Institute of Space Science and Technology)
Abstract

In this talk, first we  address the convergence issues of a standard finite volume element method (FVEM) applied to simple elliptic problems. Then, we discuss discontinuous finite volume element methods (DFVEM) for elliptic problems  with emphasis on  computational and theoretical  advantages over the standard FVEM. Further, we present a natural extension of DFVEM employed for the elliptic problem to the Stokes problems. We also discuss suitability of these methods for the approximation of incompressible miscible displacement problems.
 

Tue, 12 Jun 2018

16:00 - 17:00
L1

Recent results for C^r-parameterizations and diophantine applications

Raf Cluckers
(Lille and Leuven)
Abstract

Both in the real and in the p-adic case, I will talk about recent results about C^r-parameterizations and their diophantine applications.  In both cases, the dependence on r of the number of parameterizing C^r maps plays a role. In the non-archimedean case, we get as an application new bounds for rational points of bounded height lying on algebraic varieties defined over finite fields, sharpening the bounds by Sedunova, and making them uniform in the finite field. In the real case, some results from joint work with Pila and Wilkie, and also beyond this work, will be presented, 
in relation to several questions raised by Yomdin. The non-archimedean case is joint work with Forey and Loeser. The real case is joint work with Pila and Wilkie, continued by my PhD student S. Van Hille.  Some work with Binyamini and Novikov in the non-archimedean context will also be mentioned. The relations with questions by Yomdin is joint work with Friedland and Yomdin. 

Tue, 22 May 2018

16:00 - 17:00
L5

Some questions on class field theory and model theory

Minhyong Kim
(Oxford)
Abstract

This lecture will give a brief review of the theory of non-abelian reciprocity maps and their applications to Diophantine geometry, and pose some questions for model-theorists.
 

Tue, 15 May 2018

16:00 - 17:00
L5

Non-archimedean integrals as limits of complex integrals.

Antoine Ducros
(Sorbonne Université)
Abstract

Several works (by Kontsevich, Soibelman, Berkovich, Nicaise, Boucksom, Jonsson...) have shown that the limit behavior of a one-parameter family $(X_t)$ of complex algebraic varieties can often be described using the associated Berkovich t-adic analytic space $X^b$. In a work in progress with E. Hrushovski and F. Loeser, we provide a new instance of this general phenomenon. Suppose we are given for every t an  $(n,n)$-form $ω_t$ on $X_t$ (for n= dim X). Then under some assumptions on the formula that describes $ω_t$, the family $(ω_t)$ has a "limit" ω, which is a real valued  (n,n)-form in the sense of Chambert-Loir and myself on the Berkovich space $X^b$, and the integral of $ω_t$ on $X_t$ tends to the integral of ω on $X^b$. 
In this talk I will first make some reminders about Berkovich spaces and (n,n)-forms in this setting, and then discuss the above result. 
In fact, as I will explain, it is more convenient to formulate it with  $(X_t)$ seen as a single algebraic variety over a non-standard model *C of C and (ω_t) as a (n,n) differential form on this variety. The field *C also carries a t-adic real valuation which makes it a model of ACVF (and enables to do Berkovich geometry on it), and our proof uses repeatedly RCF and ACVF theories. 
 

Tue, 08 May 2018

16:00 - 17:00
L5

Variants of Mordell-Lang

Thomas Scanlon
(Berkeley)
Abstract


I will report on two recent papers with D. Ghioca and U. Zannier (joined by P. Corvaja and F. Hu, respectively) in which we consider variants of the Mordell-Lang conjecture.  In the first of these, we study the dynamical Mordell-Lang conjecture in positive characteristic, proving some instances, but also showing that in general the problem is at least as hard as a difficult diophantine problem over the integers.  In the second paper, we study the Mordell-Lang problem for extensions of abelian varieties by the additive group.  Here we have positive results in the function field case obtained by using the socle theorem in the form offered as an aside in Hrushovski's 1996 paper and in the number field case we relate this problem to the Bombieri-Lang conjecture.

Tue, 24 Apr 2018

14:30 - 15:00
L3

Randomized algorithms for computing full, rank-revealing factorizations

Abinand Gopal
(Oxford)
Abstract

Over the past decade, the randomized singular value decomposition (RSVD) algorithm has proven to be an efficient, reliable alternative to classical algorithms for computing low-rank approximations in a number of applications. However, in cases where no information is available on the singular value decay of the data matrix or the data matrix is known to be close to full-rank, the RSVD is ineffective. In recent years, there has been great interest in randomized algorithms for computing full factorizations that excel in this regime.  In this talk, we will give a brief overview of some key ideas in randomized numerical linear algebra and introduce a new randomized algorithm for computing a full, rank-revealing URV factorization.

Fri, 27 Apr 2018
12:00
L4

Is dispersion a stabilizing or destabilizing mechanism? Landau-damping induced by fast background flows

Edriss Titi
(Texas A&M University)
Abstract

In this talk I will present a unified approach for the effect of fast rotation and dispersion as an averaging mechanism for, on the one hand, regularizing and stabilizing certain evolution equations, such as the Navier-Stokes and Burgers equations. On the other hand, I will  also present some results in which large dispersion acts as a destabilizing mechanism for the long-time dynamics of certain dissipative evolution equations, such as the Kuramoto-Sivashinsky equation. In addition, I will present some new results concerning two- and three-dimensional turbulent flows with high Reynolds numbers in periodic domains, which exhibit ``Landau-damping" mechanism due to large spatial average in the initial data.

Thu, 07 Jun 2018
12:00
L5

On singular limits for the Vlasov-Poisson system

Mikaela Iacobelli
(Durham University)
Abstract

The Vlasov-Poisson system is a kinetic equation that models collisionless plasma. A plasma has a characteristic scale called the Debye length, which is typically much shorter than the scale of observation. In this case the plasma is called ‘quasineutral’. This motivates studying the limit in which the ratio between the Debye length and the observation scale tends to zero. Under this scaling, the formal limit of the Vlasov-Poisson system is the Kinetic Isothermal Euler system. The Vlasov-Poisson system itself can formally be derived as the limit of a system of ODEs describing the dynamics of a system of N interacting particles, as the number of particles approaches infinity. The rigorous justification of this mean field limit remains a fundamental open problem. In this talk we present the rigorous justification of the quasineutral limit for very small but rough perturbations of analytic initial data for the Vlasov-Poisson equation in dimensions 1, 2, and 3. Also, we discuss a recent result in which we derive the Kinetic Isothermal Euler system from a regularised particle model. Our approach uses a combined mean field and quasineutral limit.

Thu, 10 May 2018
12:00
L4

Untangling of trajectories for non-smooth vector fields and Bressan's Compactness Conjecture

Paolo Bonicatto
(Universität Basel)
Abstract

Given $d \ge 1$, $T>0$ and a vector field $\mathbf b \colon [0,T] \times \mathbb R^d \to \mathbb R^d$, we study the problem of uniqueness of weak solutions to the associated transport equation $\partial_t u + \mathbf b \cdot \nabla u=0$ where $u \colon [0,T] \times \mathbb R^d \to \mathbb R$ is an unknown scalar function. In the classical setting, the method of characteristics is available and provides an explicit formula for the solution of the PDE, in terms of the flow of the vector field $\mathbf b$. However, when we drop regularity assumptions on the velocity field, uniqueness is in general lost.
In the talk we will present an approach to the problem of uniqueness based on the concept of Lagrangian representation. This tool allows to represent a suitable class of vector fields as superposition of trajectories: we will then give local conditions to ensure that this representation induces a partition of the space-time made up of disjoint trajectories, along which the PDE can be disintegrated into a family of 1-dimensional equations. We will finally show that if $\mathbf b$ is locally of class $BV$ in the space variable, the decomposition satisfies this local structural assumption: this yields in particular the renormalization property for nearly incompressible $BV$ vector fields and thus gives a positive answer to the (weak) Bressan's Compactness Conjecture. This is a joint work with S. Bianchini.
 

Subscribe to