Mon, 12 Feb 2024
16:00
L2

Higher descent on elliptic curves

Sven Cats
(University of Cambridge)
Abstract

Let $E$ be an elliptic curve over a number field $K$ and $n \geq 2$ an integer. We recall that elements of the $n$-Selmer group of $E/K$ can be explicitly written in terms of certain equations for $n$-coverings of $E/K$. Writing the elements in this way is called conducting an explicit $n$-descent. One of the applications of explicit $n$-descent is in finding generators of large height for $E(K)$ and from this point of view one would like to be able to take $n$ as large as possible. General algorithms for explicit $n$-descent exist but become computationally challenging already for $n \geq 5$. In this talk we discuss combining $n$- and $(n+1)$-descents to $n(n+1)$-descent and the role that invariant theory plays in this procedure.

Mon, 05 Feb 2024
16:00
L2

TBC

TBC
(TBC)
Abstract

TBC

Mon, 29 Jan 2024
16:00
L2

Quantitative bounds for a weighted version of Chowla's conjecture

Cédric Pilatte
(University of Oxford)
Abstract

The Liouville function $\lambda(n)$ is defined to be $+1$ if $n$ is a product of an even number of primes, and $-1$ otherwise. The statistical behaviour of $\lambda$ is intimately connected to the distribution of prime numbers. In many aspects, the Liouville function is expected to behave like a random sequence of $+1$'s and $-1$'s. For example, the two-point Chowla conjecture predicts that the average of $\lambda(n)\lambda(n+1)$ over $n < x$ tends to zero as $x$ goes to infinity. In this talk, I will discuss quantitative bounds for a logarithmic version of this problem.

Mon, 22 Jan 2024
16:00
L2

Computing Tangent Spaces to Eigenvarieties

James Rawson
(University of Warwick)
Abstract

Many congruences between modular forms (or at least their q-expansions) can be explained by the theory of $p$-adic families of modular forms. In this talk, I will discuss properties of eigenvarieties, a geometric interpretation of the idea of $p$-adic families. In particular, focusing initially on the well-understood case of (elliptic) modular forms, before delving into the considerably murkier world of Bianchi modular forms. In this second case, this work gives numerical verification of a couple of conjectures, including BSD by work of Loeffler and Zerbes.

Mon, 15 Jan 2024
16:00
L2

A friendly introduction to Shimura curves

Håvard Damm-Johnsen
(University of Oxford)
Abstract

Modular curves play a key role in the Langlands programme, being the simplest example of so-called Shimura varieties.  Their less famous cousins, Shimura curves, are also very interesting, and very concrete. 
In this talk I will give a gentle introduction to the arithmetic of Shimura curves, with lots of explicit examples. Time permitting, I will say something about recent work about intersection numbers of geodesics on Shimura curves.

Warwick-Lancaster Global Covid-19 Model
Bouros, I Thompson, R Keeling, M Hill, E Moore, S
The Impact of Climate Change and Variability on the Global Distribution of Aedes Aegypti and the Spread of Dengue
Kaye, A Obolski, U Sun, L Hurrell, J Tildesley, M Thompson, R
Lectures on generalized symmetries
Bhardwaj, L Bottini, L Fraser-Taliente, L Gladden, L Gould, D Platschorre, A Tillim, H Physics Reports volume 1051 1-87 (Feb 2024)
Beyond the Learned Academy: The Practice of Mathematics, 1600-1850 Beeley, P Hollings, C (01 Jan 2023)
Subscribe to