Mon, 31 Oct 2022
14:15
L5

Closed Ricci Flows with Singularities Modeled on Asymptotically Conical Shrinkers

Max Stolarski
(University of Warwick)
Abstract

Shrinking Ricci solitons are Ricci flow solutions that self-similarly shrink under the flow. Their significance comes from the fact that finite-time Ricci flow singularities are typically modeled on gradient shrinking Ricci solitons. Here, we shall address a certain converse question, namely, “Given a complete, noncompact gradient shrinking Ricci soliton, does there exist a Ricci flow on a closed manifold that forms a finite-time singularity modeled on the given soliton?” We’ll discuss work that shows the answer is yes when the soliton is asymptotically conical. No symmetry or Kahler assumption is required, and so the proof involves an analysis of the Ricci flow as a nonlinear degenerate parabolic PDE system in its full complexity. We’ll also discuss applications to the (non-)uniqueness of weak Ricci flows through singularities.

Mon, 24 Oct 2022
14:15
L5

Hitchin representations and minimal surfaces in symmetric spaces

Nathaniel Sagman
(University of Luxembourg)
Abstract

Labourie proved that every Hitchin representation into PSL(n,R) gives rise to an equivariant minimal surface in the corresponding symmetric space. He conjectured that uniqueness holds as well (this was known for n=2,3), and explained that if true, then the Hitchin component admits a mapping class group equivariant parametrization as a holomorphic vector bundle over Teichmüller space.

In this talk, we will define Hitchin representations, Higgs bundles, and minimal surfaces, and give the background for the Labourie conjecture. We will then explain that the conjecture fails for n at least 4, and point to some future questions and conjectures.

Mon, 17 Oct 2022
14:15
L5

On the inverse problem for isometry groups of norms

Emmanuel Breuillard
((Oxford University))
Abstract

We study the problem of determining when a compact group can be realized as the group of isometries of a norm on a finite dimensional real vector space.  This problem turns out to be difficult to solve in full generality, but we manage to understand the connected groups that arise as connected components of isometry groups. The classification we obtain is related to transitive actions on spheres (Borel, Montgomery-Samelson) on the one hand and to prehomogeneous spaces (Vinberg, Sato-Kimura) on the other. (joint work with Martin Liebeck, Assaf Naor and Aluna Rizzoli)

Wed, 31 May 2023

16:00 - 17:00
L4

Mathematics and its history, through literature

Sarah Hart
(Birkbeck, University of London)
Abstract

Mathematics has always been part of the fabric of culture. References to mathematics in literature go back at least as far as Aristophanes, and encompass everyone from Dostoevsky to Oscar Wilde. In this talk I’ll explore some of the ways that literature has engaged with mathematical ideas, from the 17th and 18th century obsession with the cycloid (the “Helen of Geometry”) to the 19th century love of the fourth dimension.

Thu, 13 Oct 2022
16:00
L5

The irrationality of a divisor function series of Erdös and Kac

Kyle Pratt
Abstract

For positive integers $k$ and $n$ let $\sigma_k(n)$ denote the sum of the $k$th powers of the divisors of $n$. Erd\H{o}s and Kac conjectured that, for every $k$, the number $\alpha_k = \sum_{n\geq 1} \frac{\sigma_k(n)}{n!}$ is irrational. This is known conditionally for all $k$ assuming difficult conjectures like the Hardy-Littlewood prime $k$-tuples conjecture. Before our work it was known unconditionally that $\alpha_k$ is irrational if $k\leq 3$. We discuss some of the ideas in our recent proof that $\alpha_4$ is irrational. The proof involves sieve methods and exponential sum estimates.

Mon, 28 Nov 2022
13:00
L1

Integrability of the Liouville theory

Antti Kupiainen
(Helsinki)
Further Information

Joint Random Matrix Seminar.

Abstract

Conformal Field Theories (CFT) are believed to be exactly solvable once their primary scaling fields and their 3-point functions are known. This input is called the spectrum and structure constants of the CFT respectively. I will review recent work where this conformal bootstrap program can be rigorously carried out for the case of Liouville CFT, a theory that plays a fundamental role in 2d random surface theory and many other fields in physics and mathematics. Liouville CFT has a probabilistic formulation on an arbitrary Riemann surface and the bootstrap formula can be seen as a "quantization" of the plumbing construction of surfaces with marked points axiomatically discussed earlier by Graeme Segal. Joint work with Colin Guillarmou, Remi Rhodes and Vincent Vargas.

Mon, 31 Oct 2022
13:00
L1

Holomorphic twist and Confinement

Jingxiang Wu
(Oxford)
Abstract

I will describe a procedure, known as holomorphic twist, to isolate protected quantities in supersymmetric quantum field theories. The resulting theories are holomorphic, interacting and have infinite dimensional symmetries, analogous to the holomorphic half of a 2D CFT. I will explain how to study quantum corrections to these symmetries and other  higher operations.
As a surprise, we find a novel UV manifestation of
confinement, dubbed "holomorphic confinement," in the example of pure
SU(N) super Yang-Mills.

Mon, 21 Nov 2022
13:00
L1

Effective description of quantum chaos and applications to black holes

Felix Haehl
(Southampton)
Abstract

After reviewing different aspects of thermalization and chaos in holographic quantum systems, I will argue that universal aspects can be captured using an effective field theory framework that shares similarities with hydrodynamics. Focusing on the quantum butterfly effect, I will explain how to develop a simple effective theory of the 'scramblon' from path integral considerations. I will also discuss applications of this formalism to shockwave scattering in black hole backgrounds in AdS/CFT.

Mon, 17 Oct 2022
13:00
L1

Semiclassics for Large Quantum Numbers

Mark Mezei
(Oxford)
Abstract

According to the correspondence principle, classical physics emerges in the limit of large quantum numbers. We examine three examples of the semiclassical description of conformal field theory data: large charge boundary operators in the O(2) model, large spin impurities in the free triplet scalar field theory and large charge Wilson lines in QED. By simultaneously taking the coupling to zero and quantum numbers to infinity, we can connect the microscopic to the emergent classical description smoothly.

Wed, 30 Nov 2022
16:00
L4

Handlebody groups and disk graphs

Panagiotis Papadopoulos
(LMU Munich)
Abstract

The handlebody group is defined as the mapping class group of a three-dimensional handlebody. We will survey some geometric and algebraic properties of the handlebody groups and compare them to those of two of the most studied (classes of) groups in geometric group theory, namely mapping class groups of surfaces, and ${\rm Out}(F_n)$. We will also introduce the disk graph, the handlebody-analogon of the curve graph of a surface, and discuss some of its properties.

Subscribe to