Fri, 21 May 2021
16:00
Virtual

Black hole microstate statistics from Euclidean wormholes

Jordan Cotler
(Harvard University)
Abstract

Over the last several years, it has been shown that black hole microstate level statistics in various models of 2D gravity are encoded in wormhole amplitudes.  These statistics quantitatively agree with predictions of random matrix theory for chaotic quantum systems; this behavior is realized since the 2D theories in question are dual to matrix models.  But what about black hole microstate statistics for Einstein gravity in 3D and higher spacetime dimensions, and ultimately in non-perturbative string theory?  We will discuss progress in these directions.  In 3D, we compute a wormhole amplitude that encodes the energy level statistics of BTZ black holes.  In 4D and higher, we find analogous wormholes which appear to encode the level statistics of small black holes just above threshold.  Finally, we study analogous Euclidean wormholes in the low-energy limit of type IIB string theory; we provide evidence that they encode the level statistics of small black holes just above threshold in AdS5 x S5.  Remarkably, these wormholes appear to be stable in appropriate regimes, and dominate over brane-anti-brane nucleation processes in the computation of black hole microstate statistics.

Fri, 14 May 2021
16:00
Virtual

Leaps and bounds towards scale separation

Bruno De Luca
(Stanford University)
Abstract

In a broad class of gravity theories, the equations of motion for vacuum compactifications give a curvature bound on the Ricci tensor minus a multiple of the Hessian of the warping function. Using results in so-called Bakry-Émery geometry, I will show how to put rigorous general bounds on the KK scale in gravity compactifications in terms of the reduced Planck mass or the internal diameter.
If time permits, I will reexamine in this light the local behavior in type IIA for the class of supersymmetric solutions most promising for scale separation. It turns out that the local O6-plane behavior cannot be smoothed out as in other local examples; it generically turns into a formal partially smeared O4.

Wed, 05 May 2021

16:00 - 17:00

Introduction to the moduli of curves

Wanlong Zheng
Abstract

https://teams.microsoft.com/l/meetup-join/19%3ameeting_ZGRiMTM1ZjQtZWNi…

I will introduce the notion of moduli spaces of curves and specifically genus 0 curves. They are in general not compact, and we will discuss the most common way to compactify them. In particular, I will try to explain the construction of Mbar_{0,5}, together with how to classify the boundary, how it is related to a moduli space of tropical curves, and how to do intersection theory on this space.

Wed, 16 Jun 2021

16:30 - 18:00

Some recent results on Structural Reflection

Joan Bagaria
(ICREA and University of Barcelona)
Abstract

The general Structural Reflection (SR) principle asserts that for every definable, in the first-order language of set theory, possibly with parameters, class $\mathcal{C}$ of relational structures of the same type there exists an ordinal $\alpha$ that reflects $\mathcal{C}$, i.e.,  for every $A$ in $\mathcal{C}$ there exists $B$ in $\mathcal{C}\cap V_\alpha$ and an elementary embedding from $B$ into $A$. In this form, SR is equivalent to Vopenka’s Principle (VP). In my talk I will present some different natural variants of SR which are equivalent to the existence some well-known large cardinals weaker than VP. I will also consider some forms of SR, reminiscent of Chang’s Conjecture, which imply the existence of large cardinal principles stronger than VP, at the level of rank-into-rank embeddings and beyond. The latter is a joint work with Philipp Lücke.

Wed, 26 May 2021

16:30 - 18:00

The strength of determinacy when all sets are universally Baire

Sandra Müller
(TU Wien and University of Vienna)
Abstract

The large cardinal strength of the Axiom of Determinacy when enhanced with the hypothesis that all sets of reals are universally Baire is known to be much stronger than the Axiom of Determinacy itself. In fact, Sargsyan conjectured it to be as strong as the existence of a cardinal that is both a limit of Woodin cardinals and a limit of strong cardinals. Larson, Sargsyan and Wilson showed that this would be optimal via a generalization of Woodin's derived model construction. We will discuss a new translation procedure for hybrid mice extending work of Steel, Zhu and Sargsyan and use this to prove Sargsyan's conjecture.

Thu, 17 Jun 2021

14:00 - 15:00
Virtual

Wilson Loops, Cusps and Holography

Pietro Ferrero
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link. 

Thu, 10 Jun 2021

14:00 - 15:00
Virtual

Random Matrices and JT Gravity

Carmen Jorge-Diaz
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link. 

Thu, 03 Jun 2021

14:00 - 15:00
Virtual

Topological QFTs (Part II)

Marieke Van Beest and Sujay Nair
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link. 

Thu, 27 May 2021

14:00 - 15:00
Virtual

Topological QFTs (Part I)

Marieke Van Beest and Sujay Nair
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link. 

Thu, 20 May 2021

14:00 - 15:00
Virtual

Invariants of 4-Manifolds

Horia Magureanu
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link. 

Subscribe to