Thu, 28 May 2020
15:00
Virtual

Boundary regularity of area-minimizing currents: a linear model with analytic interface

Zihui Zhao
(University of Chicago)
Abstract

Given a curve , what is the surface  that has smallest area among all surfaces spanning ? This classical problem and its generalizations are called Plateau's problem. In this talk we consider area minimizers among the class of integral currents, or roughly speaking, orientable manifolds. Since the 1960s a lot of work has been done by De Giorgi, Almgren, et al to study the interior regularity of these minimizers. Much less is known about the boundary regularity, in the case of codimension greater than 1. I will speak about some recent progress in this direction.

Wed, 27 May 2020
10:00
Virtual

Poincare's Polyhedron Theorem and Applications to Algorithms.

Joe Scull
(University of Oxford)
Abstract

Much progress in the study of 3-manifolds has been made by considering the geometric structures they admit. This is nowhere more true than for 3-manifolds which admit a hyperbolic structure. However, in the land of algorithms a more combinatorial approach is necessary, replacing our charts and isometries with finite simplicial complexes that are defined by a finite amount of data. 

In this talk we'll have a look at how in fact one can combine the two approaches, using the geometry of hyperbolic 3-manifolds to assist in this more combinatorial approach. To do so we'll combine tools from Hyperbolic Geometry, Triangulations, and perhaps suprisingly Polynomial Algebra to find explicit bounds on the runtime of an algorithm for comparing Hyperbolic manifolds.

Thu, 28 May 2020

16:00 - 17:00

Robust uncertainty sensitivity quantification

Johannes Wiesel
((Oxford University))
Abstract

 

We consider sensitivity of a generic stochastic optimization problem to model uncertainty. We take a non-parametric approach and capture model uncertainty using Wasserstein balls around the postulated model. We provide explicit formulae for the first order correction to both the value function and the optimizer and further extend our results to optimization under linear constraints.  We present applications to statistics, machine learning, mathematical finance and uncertainty quantification. In particular, we prove that LASSO leads to parameter shrinkage, propose measures to quantify robustness of neural networks to adversarial examples and compute sensitivities of optimised certainty equivalents in finance. We also propose extensions of this framework to a multiperiod setting. This talk is based on joint work with Daniel Bartl, Samuel Drapeau and Jan Obloj.

Graduate career development workshop for women in HCI research
Hall, L Martin, U Proceedings of the 20th BCS HCI Group Conference: Engage, HCI 2006 279-281 (01 Jan 2020)
Mon, 25 May 2020

16:00 - 17:00

Infinitely regularizing paths, and regularization by noise.

Fabian Harang
(University of Oslo)
Abstract

 

Abstract: 

In this talk I will discuss regularization by noise from a pathwise perspective using non-linear Young integration, and discuss the relations with occupation measures and local times. This methodology of pathwise regularization by noise was originally proposed by Gubinelli and Catellier (2016), who use the concept of averaging operators and non-linear Young integration to give meaning to certain ill posed SDEs. 

In a recent work together with   Nicolas Perkowski we show that there exists a class of paths with exceptional regularizing effects on ODEs, using the framework of Gubinelli and Catellier. In particular we prove existence and uniqueness of ODEs perturbed by such a path, even when the drift is given as a Scwartz distribution. Moreover, the flow associated to such ODEs are proven to be infinitely differentiable. Our analysis can be seen as purely pathwise, and is only depending on the existence of a sufficiently regular occupation measure associated to the path added to the ODE. 

As an example, we show that a certain type of Gaussian processes has infinitely differentiable local times, whose paths then can be used to obtain the infinitely regularizing effect on ODEs. This gives insight into the powerful effect that noise may have on certain equations. I will also discuss an ongoing extension of these results towards regularization of certain PDE/SPDEs by noise.​

Mon, 01 Jun 2020

16:00 - 17:00

A martingale approach for fractional Brownian motions and related path dependent PDEs

Frederi Viens
(Michigan State University)
Abstract


We study dynamic backward problems, with the computation of conditional expectations as a special objective, in a framework where the (forward) state process satisfies a Volterra type SDE, with fractional Brownian motion as a typical example. Such processes are neither Markov processes nor semimartingales, and most notably, they feature a certain time inconsistency which makes any direct application of Markovian ideas, such as flow properties, impossible without passing to a path-dependent framework. Our main result is a functional Itô formula, extending the Functional Ito calculus to our more general framework. In particular, unlike in the Functional Ito calculus, where one needs only to consider stopped paths, here we need to concatenate the observed path up to the current time with a certain smooth observable curve derived from the distribution of the future paths.  We then derive the path dependent PDEs for the backward problems. Finally, an application to option pricing and hedging in a financial market with rough volatility is presented.

Joint work with JianFeng Zhang (USC).

Mon, 25 May 2020
12:45
Virtual

Symplectic duality and implosion -- ZOOM SEMINAR

Andrew Dancer
(University of Oxford)
Abstract

We discuss hyperkahler implosion spaces, their relevance to group actions and why they should fit into the symplectic duality picture. For certain groups we present candidates for the symplectic duals of the associated implosion spaces and provide computational evidence. This is joint work with Amihay Hanany and Frances Kirwan.
 

Mon, 08 Jun 2020
12:45
Virtual

Branes and the Swampland -- ZOOM SEMINAR

Hee-Cheol Kim
(POSTECH Pohang)
Abstract

I will talk about a novel idea on the Swampland program that uses consistency of what lives on the string probes in gravitational theories. The central charges and the levels of current algebras of 2d CFTs on these strings can be calculated by anomaly inflow mechanism and used to provide constraints on the supergravity theories based on unitarity of the worldsheet CFT. I will show some of the theories with 8 or 16 supersymmetries, which are otherwise consistent looking, belong to the Swampland.

Subscribe to