Thu, 15 Nov 2018

16:00 - 17:30
L3

Self-similarity in boundary layers

Bruno Eckhardt
(Philipps-Universität Marburg)
Abstract

Boundary layers control the transport of momentum, heat, solutes and other quantities between walls and the bulk of a flow. The Prandtl-Blasius boundary layer was the first quantitative example of a flow profile near a wall and could be derived by an asymptotic expansion of the Navier-Stokes equation. For higher flow speeds we have scaling arguments and models, but no derivation from the Navier-Stokes equation. The analysis of exact coherent structures in plane Couette flow reveals ingredients of such a more rigorous description of boundary layers. I will describe how exact coherent structures can be scaled to obtain self-similar structures on ever smaller scales as the Reynolds number increases.

A quasilinear approximation allows to combine the structures self-consistently to form boundary layers. Going beyond the quasilinear approximation will then open up new approaches for controlling and manipulating boundary layers.

Tue, 01 May 2018

14:00 - 14:30
L5

Scalable Least-Squares Minimisation for Bundle Adjustment Problem

Lindon Roberts
(Oxford)
Abstract

Structure from Motion (SfM) is a problem which asks: given photos of an object from different angles, can we reconstruct the object in 3D? This problem is important in computer vision, with applications including urban planning and autonomous navigation. A key part of SfM is bundle adjustment, where initial estimates of 3D points and camera locations are refined to match the images. This results in a high-dimensional nonlinear least-squares problem, which is typically solved using the Gauss-Newton method. In this talk, I will discuss how dimensionality reduction methods such as block coordinates and randomised sketching can be used to improve the scalability of Gauss-Newton for bundle adjustment problems.

Tue, 22 May 2018

14:30 - 15:00
L5

Proximal methods for Mean Field Games with local couplings

Dr Dante Kalise
(Imperial College)
Abstract

In this talk we address the numerical approximation of Mean Field Games with local couplings. For finite difference discretizations of the Mean Field Game system, we follow a variational approach, proving that the schemes can be obtained as the optimality system of suitably defined optimization problems. In order to prove the existence of solutions of the scheme with a variational argument, the monotonicity of the coupling term is not used, which allow us to recover general existence results. Next, assuming next that the coupling term is monotone, the variational problem is cast as a convex optimization problem for which we study and compare several proximal type methods. These algorithms have several interesting features, such as global convergence and stability with respect to the viscosity parameter. We conclude by presenting numerical experiments assessing the performance of the proposed methods. In collaboration with L. Briceno-Arias (Valparaiso, CL) and F. J. Silva (Limoges, FR).

Tue, 15 May 2018

14:00 - 14:30
L5

Perfectly matched layers: how to stop making (unwanted) waves

Radu Cimpeanu
(OCIAM)
Abstract

Many problems that involve the propagation of time-harmonic waves are naturally posed in unbounded domains. For instance, a common problem in the are a of acoustic scattering is the determination of the sound field that is generated when an incoming time-harmonic wave (which is assumed to arrive ``from infinity'') impinges onto a solid body (the scatterer). The boundary
conditions to be applied on the surface of the scatterer (most often of Dirichlet, Neumann or Robin type) tend to be easy to enforce in most numerical solution schemes. Conversely, the imposition of a suitable decay condition (typically a variant of the Sommerfeld radiation condition), which is required to ensure the well-posedness of the solution, is considerably more involved. As a result, many numerical schemes generate spurious reflections from the outer boundary of the finite computational domain.


Perfectly matched layers (PMLs) are in this context a versatile alternative to the usage of classical approaches such as employing absorbing boundary conditions or Dirichlet-to-Neumann mappings, but unfortunately most PML formulations contain adjustable parameters which have to be optimised to give the best possible performance for a particular problem. In this talk I will present a parameter-free PML formulation for the case of the two-dimensional Helmholtz equation. The performance of the proposed method is demonstrated via extensive numerical experiments, involving domains with smooth and polygonal boundaries, different solution types (smooth and singular, planar and non-planar waves), and a wide range of wavenumbers (R. Cimpeanu, A. Martinsson and M.Heil, J. Comp. Phys., 296, 329-347 (2015)). Possible extensions and generalisations will also be touched upon.

Tue, 29 May 2018

14:00 - 15:00
L5

Formulations of Inverse Problems

Chris Farmer
(Oxford University)
Abstract

This talk will review the main Tikhonov and Bayesian smoothing formulations of inverse problems for dynamical systems with partially observed variables and parameters. The main contenders: strong-constraint, weak-constraint and penalty function formulations will be described. The relationship between these formulations and associated optimisation problems will be revealed.  To close we will indicate techniques for maintaining sparsity and for quantifying uncertainty.

Wed, 04 Jul 2018

14:30 - 15:30
L3

A^1 contractible varieties

Paul Arne Østvær
(Oslo)
Abstract

Motivic homotopy theory gives a way of viewing algebraic varieties and topological spaces as objects in the same category, where homotopies are parametrised  by the affine line.  In particular, there is a notion of $\mathbb A^1$ contractible varieties.  Affine spaces are $\mathbb A^1$ contractible by definition.  The Koras-Russell threefold KR defined by the equation $x + x^2y + z^2 + t^3 = 0$ in $\mathbb A^4$ is the first nontrivial example of an $\mathbb A^1$ contractible smooth affine variety.  We will discuss this example in some detail, and speculate on whether one can use motivic homotopy theory to distinguish between KR and $\mathbb A^3$.

Thu, 03 May 2018

16:00 - 17:00
L6

Irreducibility of random polynomials

Péter Varjú
(University of Cambridge)
Abstract

Let $P$ be a random polynomial of degree $d$ such that the leading and constant coefficients are 1 and the rest of the coefficients are independent random variables taking the value 0 or 1 with equal probability. Odlyzko and Poonen conjectured that $P$ is irreducible with probability tending to 1 as $d$ grows.  I will talk about an on-going joint work with Emmanuel Breuillard, in which we prove that GRH implies this conjecture. The proof is based on estimates for the mixing time of random walks on $\mathbb{F}_p$, where the steps are given by the maps $x \rightarrow ax$ and $x \rightarrow ax+1$ with equal probability.

Subscribe to