Applied Topology TBC
Dr Zoe Copperband is a member of the Penn Engineering GRASP Laboratory. Her recent preprint, Towards Homological Methods in Graphic Statics, can be found here.
13:00
Defect two-point functions in 6d (2,0) theories
Abstract
In this talk, I will discuss correlation functions in 6d (2, 0) theories of two 1/2-BPS operators inserted away from a 1/2-BPS surface defect. In the large central charge limit the leading connected contribution corresponds to sums of tree-level Witten diagram in AdS7×S4 in the presence of an AdS3 defect. I will show that these correlators can be uniquely determined by imposing only superconformal symmetry and consistency conditions, eschewing the details of the complicated effective Lagrangian. I will present the explicit result of all such two-point functions, which exhibits remarkable hidden simplicity.
11:00
On two Formulations of McKean--Vlasov Control with Killing
Abstract
We study a McKean–Vlasov control problem with killing and common noise. The particles in this control model live on the real line and are killed at a positive intensity whenever they are in the negative half-line. Accordingly, the interaction between particles occurs through the subprobability distribution of the living particles. We establish the existence of an optimal semiclosed-loop control that only depends on the particles’ location and not their cumulative intensity. This problem cannot be addressed through classical mimicking arguments, because the particles’ subprobability distribution cannot be reconstructed from their location alone. Instead, we represent optimal controls in terms of the solutions to semilinear BSPDEs and show those solutions do not depend on the intensity variable.