16:00
A Basic Problem in Analytic Number Theory
Abstract
I will discuss a basic problem in analytic number theory which has appeared recently in my work. This will be a gentle introduction to the Gauss circle problem, hopefully with a discussion of some extensions and applications to understanding L-functions.
16:00
Hodge theory in positive characteristic
Abstract
I will introduce the Hodge-de-Rham spectral sequence and formulate an algebraic Hodge decomposition theorem. Time permitting, I will sketch Deligne and Illusie’s proof of the Hodge decomposition using positive characteristic methods.
16:00
Globally Valued Fields and solutions of polynomial equations with heights conditions
Abstract
I will introduce various heights on number fields and outline how solving polynomial equations with heights conditions is related to Arakelov geometry and a continuous logic theory called GVF.
16:00
Avoiding Problems
Abstract
In 2019 Masser and Zannier proved that "most" abelian varieties over the algebraic numbers are not isogenous to the jacobian of any curve (where "most" refers to an ordering by some suitable height function). We will see how this result fits in the general Zilber-Pink Conjecture picture and we discuss some (rather concrete) analogous problems in a power of the modular curve Y(1).
16:00
Primes in arithmetic progressions to smooth moduli
Abstract
The twin prime conjecture asserts that there are infinitely many primes p for which p+2 is also prime. This conjecture appears far out of reach of current mathematical techniques. However, in 2013 Zhang achieved a breakthrough, showing that there exists some positive integer h for which p and p+h are both prime infinitely often. Equidistribution estimates for primes in arithmetic progressions to smooth moduli were a key ingredient of his work. In this talk, I will sketch what role these estimates play in proofs of bounded gaps between primes. I will also show how a refinement of the q-van der Corput method can be used to improve on equidistribution estimates of the Polymath project for primes in APs to smooth moduli.
A solution functor for D-cap-modules
Abstract
The theory of D-modules has found remarkable applications in various mathematical areas, for example, the representation theory of complex semi-simple Lie algebras. Two pivotal theorems in this field are the Beilinson-Bernstein Localisation Theorem and the Riemann-Hilbert Correspondence. This talk will explore a p-adic analogue. Ardakov-Wadsley introduced the sheaf D-cap of infinite order differential operators on a given smooth rigid-analytic variety to develop a p-adic counterpart for the Beilinson-Bernstein localisation. However, the classical approach to the Riemann-Hilbert Correspondence does not apply in the p-adic context. I will present an alternative approach, introducing a solution functor for D-cap-modules using new methods from p-adic Hodge theory.
The Artin-Schreier Theorem
Abstract
Typically, the algebraic closure of a non-algebraically closed field F is an infinite extension of F. However, this doesn't always have to happen: for example consider $\mathbb{R}$ inside $\mathbb{C}$. Are there any other examples? Yes: for example you can consider the index two subfield of the algebraic numbers, defined by intersecting with $\mathbb{R}$. However this is still similar to the first example: the degree of the extension is two, and we extract a square root of $-1$ to obtain the algebraic closure. The Artin-Schreier Theorem tells us that amazingly this is always the case: if $F$ is a field for which the algebraic closure is a non trivial finite extension $L$, then this forces F to have characteristic 0, L is degree two over $F$, and $L = F(i)$ for some $i$ with $i^2 = -1$. I.e. all such extensions "look like" $\mathbb{C} / \mathbb{R}$. In this expository talk we will give an overview of the proof of this theorem, and try to get some feeling for why this result is true.
On stability of metric spaces and Kalton's property Q
Abstract
There has been considerable interest in the problem of whether every metric space of bounded geometry coarsely embeds into a uniformly convex Banach space due to the work of Kasparov and Yu that established a connection between such embeddings and the Novikov conjecture. Brown and Guentner were able to prove that a metric space with bounded geometry coarsely embeds into a reflexive Banach space. Kalton significantly extended this result to stable metric spaces and asked whether these classes are coarsely equivalent, i.e. whether every reflexive Banach space coarsely embeds into a stable metric space. Baudier introduced the notion of upper stability, a relaxation of stability, for metric spaces as a new invariant to distinguish reflexive spaces from stable metric spaces. In this talk, we show that in fact, every reflexive space is upper stable and also establish a connection of upper stability to the asymptotic structure of Banach spaces. This is joint work with F. Baudier and Th. Schlumprecht.