15:30
Unramified correspondence and virtual homology of mapping class groups
Abstract
I shall discuss my recent work showing that the Bogomolov-Tschinkel universality conjecture holds if and only if the mapping class groups of a punctured surface is large. One consequence of this result is that all genus 2 surface-by-surface (and all genus 2 surface-by-free) groups are virtually algebraically fibered. Moreover, I will explain why simple curve homology does not always generate homology of finite covers of closed surface. I will also mention my work with O. Tosic regarding the Putman-Wieland conjecture, and explain the partial solution to the Prill's problem about algebraic curves.