16:00
Crystalline liftability of irregular weights and partial weight one modularity
Abstract
Let $p$ be an odd prime. Let $K/\mathbf{Q}_p$ be a finite unramified extension. Let $\rho: G_K \to \mathrm{GL}_2(\overline{\mathbf{F}}_p)$ be a continuous representation. We prove that $\rho$ has a crystalline lift of small irregular weight if and only if it has multiple crystalline lifts of certain specified regular weights. The inspiration for this result comes from recent work of Diamond and Sasaki on geometric Serre weight conjectures. We also discuss applications to partial weight one modularity.