Thu, 09 Feb 2017
11:00
C5

The topological closure of algebraic and o-minimal flows in compact tori

Kobi Peterzil
(Haifa)
Abstract

(joint work with Sergei Starchenko)

Let p:C^n ->A be the covering map of a complex abelian variety and let X be an algebraic variety of C^n, or more generally a definable set in an o-minimal expansion of the real field. Ullmo and Yafaev investigated the topological closure of p(X) in A in the above two  settings and conjectured that the frontier of p(X) can be described, when X is algebraic as finitely many cosets of real sub tori of A, They proved the conjecture when dim X=1. They make a similar conjecture for X definable in an o-minimal structure.

In recent work we show that the above conjecture fails as stated, and prove a modified version,  describing the frontier of p(X) as finitely many families of cosets of subtori. We prove a similar result when X is a definable set in an o-minimal structure and p:R^n-> T is the covering map of a real torus.  The proofs use model theory of o-minimal structures as well as algebraically closed valued fields.

Tue, 07 Mar 2017
14:00
L5

Efficient DC algorithm for sparse optimization

Akiko Takeda
(Institute of Statistical Mathematics Tokyo)
Abstract

In various research fields such as machine learning, compressed sensing and operations research, optimization problems which seek sparsity of solutions by the cardinality constraint or rank constraint are studied. We formulate such problems as DC (Difference of two Convex functions) optimization problems and apply DC Algorithm (DCA) to them. While a subproblem needs to be solved in each DCA iteration, its closed-form solution can be easily obtained by soft-thresholding operation. Numerical experiments demonstrate the efficiency of the proposed DCA in comparison with existing methods.
This is a joint work with J. Gotoh (Chuo Univ.) and K. Tono (U. Tokyo). 

Review of Particle Physics
Olive, K volume 40 issue 10 100001 (Oct 2016)
Thu, 19 Jan 2017
16:00
L6

Joint Logic/Number Theory Seminar: Formality and higher Massey products in Galois cohomology

Adam Topaz
(Oxford)
Abstract

There are several conjectures in the literature suggesting that absolute Galois groups of fields tend to be "as free as possible," given their "almost-abelian" data.
This can be made precise in various ways, one of which is via the notion of "1-formality" arising in analogy with the concept in rational homotopy theory.
In this talk, I will discuss several examples which illustrate this phenomenon, as well as some surprising diophantine consequences.
This discussion will also include some recent joint work with Guillot, Mináč, Tân and Wittenberg, concerning the vanishing of mod-2 4-fold Massey products in the Galois cohomology of number fields.

Thu, 09 Mar 2017
17:30
L6

Multivariate Transseries

Tobias Kaiser
(Passau)
Abstract

We discuss how one can define transseries in several variables. The idea is
to combine the construction of the univariate transseries with a blow up procedure. The
latter allows to normalize transseries in an arbitrary number of variables which makes
them manageable as usual transseries.
 

Thu, 26 Jan 2017
17:30
L6

Existentially definable henselian valuation rings with p-adic residue fields

Arno Fehm
(Manchester)
Abstract

In joint work with Sylvy Anscombe we had found an abstract
valuation theoretic condition characterizing those fields F for which
the power series ring F[[t]] is existentially 0-definable in its
quotient field F((t)). In this talk I will report on recent joint work
with Sylvy Anscombe and Philip Dittmann in which the study of this
condition leads us to some beautiful results on the border of number
theory and model theory. In particular, I will suggest and apply a
p-adic analogue of Lagrange's Four Squares Theorem.

Tue, 31 Jan 2017
14:30
L5

Sync-Rank: Robust ranking, constrained ranking and rank aggregation via eigenvector and SDP synchronization

Mihai Cucuringu
(University of Oxford)
Abstract

We consider the classic problem of establishing a statistical ranking of a set of n items given a set of inconsistent and incomplete pairwise comparisons between such items. Instantiations of this problem occur in numerous applications in data analysis (e.g., ranking teams in sports data), computer vision, and machine learning. We formulate the above problem of ranking with incomplete noisy information as an instance of the group synchronization problem over the group SO(2) of planar rotations, whose usefulness has been demonstrated in numerous applications in recent years. Its least squares solution can be approximated by either a spectral or a semidefinite programming (SDP) relaxation, followed by a rounding procedure. We perform extensive numerical simulations on both synthetic and real-world data sets (Premier League soccer games, a Halo 2 game tournament and NCAA College Basketball games) showing that our proposed method compares favorably to other algorithms from the recent literature.

We propose a similar synchronization-based algorithm for the rank-aggregation problem, which integrates in a globally consistent ranking pairwise comparisons given by different rating systems on the same set of items. We also discuss the problem of semi-supervised ranking when there is available information on the ground truth rank of a subset of players, and propose an algorithm based on SDP which recovers the ranks of the remaining players. Finally, synchronization-based ranking, combined with a spectral technique for the densest subgraph problem, allows one to extract locally-consistent partial rankings, in other words, to identify the rank of a small subset of players whose pairwise comparisons are less noisy than the rest of the data, which other methods are not able to identify. 
 

Subscribe to