16:00
Symbol Alphabets from Plabic Graphs
Abstract
Symbol alphabets of n-particle amplitudes in N=4 super-Yang-Mills theory are known to contain certain cluster variables of Gr(4,n) as well as certain algebraic functions of cluster variables. In this talk we suggest an algorithm for computing these symbol alphabets from plabic graphs by solving matrix equations of the form C.Z = 0 to associate functions on Gr(m,n) to parameterizations of certain cells of Gr_+ (k,n) indexed by plabic graphs. For m=4 and n=8 we show that this association precisely reproduces the 18 algebraic symbol letters of the two-loop NMHV eight-point amplitude from four plabic graphs. We further show that it is possible to obtain all rational symbol letters (in fact all cluster variables) by solving C.Z = 0 if one allows C to be an arbitrary cluster parameterization of the top cell of Gr_+ (n-4,n).
Spacetime Singularities - Roger Penrose, Dennis Lehmkuhl & Melvyn Bragg
Oxford Mathematics Online Public Lecture in Partnership with Wadham College celebrating Roger Penrose's Nobel Prize
Spacetime Singularities - Roger Penrose, Dennis Lehmkuhl and Melvyn Bragg
Tuesday 16 February 2021
5.00-6.30pm
Dennis Lehmkuhl: From Schwarzschild’s singularity and Hadamard’s catastrophe to Penrose’s trapped surfaces
Roger Penrose: Spacetime singularities - to be or not to be?
Roger Penrose & Melvyn Bragg: In conversation
What are spacetime singularities? Do they exist in nature or are they artefacts of our theoretical reasoning? Most importantly, if we accept the general theory of relativity, our best theory of space, time, and gravity, do we then also have to accept the existence of spacetime singularities?
In this special lecture, Sir Roger Penrose, 2020 Nobel Laureate for Physics, will give an extended version of his Nobel Prize Lecture, describing his path to the first general singularity theorem of general relativity, and to the ideas that sprung from this theorem, notably the basis for the existence of Black Holes. He will be introduced by Dennis Lehmkuhl whose talk will describe how the concept of a spacetime singularity developed prior to Roger's work, in work by Einstein and others, and how much of a game changer the first singularity theorem really was.
The lectures will be followed by an interview with Roger by Melvyn Bragg.
Roger Penrose is the 2020 Nobel Laureate for Physics and Emeritus Rouse Ball Professor in Oxford; Dennis Lehmkuhl is Lichtenberg Professor of History and Philosophy of Physics at the University of Bonn and one of the Editors of Albert Einstein's Collected Papers: Melvyn Bragg is a broadcaster and author best known for his work as editor and presenter of the South Bank Show and In Our Time.
Watch online (no need to register - and the lecture will stay up on all channels afterwards):
Oxford Mathematics Twitter
Oxford Mathematics Facebook
Oxford Mathematics Livestream
Oxford Mathematics YouTube
The Oxford Mathematics Public Lecture are generously supported by XTX Markets
[[{"fid":"60543","view_mode":"media_397x223","fields":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_397x223","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-397x223","data-delta":"1"}}]]
Representations of affine Hecke algebras and graded Hecke algebras
Abstract
There is a connection between certain smooth representations of a reductive p-adic group and the representations of the Iwahori-Hecke algebra of this p-adic group. This Iwahori-Hecke algebra is a specialisation of a more general affine Hecke algebra. In this talk, we will discuss affine Hecke algebras and graded Hecke algebras. We will state a result from Lusztig (1989) that relates the representation theory of an affine Hecke algebra and a particular graded Hecke algebra and we will present a simple example of this relation.
Nonlinear Fokker=Planck equations with measure as initial data and McKean-Vlasov equations
Abstract
Nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations This talk is about joint work with Viorel Barbu. We consider a class of nonlinear Fokker-Planck (- Kolmogorov) equations of type \begin{equation*} \frac{\partial}{\partial t} u(t,x) - \Delta_x\beta(u(t,x)) + \mathrm{div} \big(D(x)b(u(t,x))u(t,x)\big) = 0,\quad u(0,\cdot)=\mu, \end{equation*} where $(t,x) \in [0,\infty) \times \mathbb{R}^d$, $d \geq 3$ and $\mu$ is a signed Borel measure on $\mathbb{R}^d$ of bounded variation. In the first part of the talk we shall explain how to construct a solution to the above PDE based on classical nonlinear operator semigroup theory on $L^1(\mathbb{R}^d)$ and new results on $L^1- L^\infty$ regularization of the solution semigroups in our case. In the second part of the talk we shall present a general result about the correspondence of nonlinear Fokker-Planck equations (FPEs) and McKean-Vlasov type SDEs. In particular, it is shown that if one can solve the nonlinear FPE, then one can always construct a weak solution to the corresponding McKean-Vlasov SDE. We would like to emphasize that this, in particular, applies to the singular case, where the coefficients depend "Nemytski-type" on the time-marginal law of the solution process, hence the coefficients are not continuous in the measure-variable with respect to the weak topology on probability measures. This is in contrast to the literature in which the latter is standardly assumed. Hence we can cover nonlinear FPEs as the ones above, which are PDEs for the marginal law densities, realizing an old vision of McKean.
References V. Barbu, M. Röckner: From nonlinear Fokker-Planck equations to solutions of distribution dependent SDE, Ann. Prob. 48 (2020), no. 4, 1902-1920. V. Barbu, M. Röckner: Solutions for nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations, J. Funct. Anal. 280 (2021), no. 7, 108926.
The statistics of firm growth rates
Abstract
Whether one uses the sales, the number of employees or any other proxy for firm "size", it is well known that this quantity is power-law distributed, with important consequences to aggregate macroeconomic fluctuations. The Gibrat model explained this by proposing that firms grow multiplicatively, and much work has been done to study the statistics of their growth rates. Inspired by past work in the statistics of financial returns, I present a new framework to study these growth rates. In particular, I will show that they follow approximately Gaussian statistics, provided their heteroskedastic nature is taken into account. I will also elucidate the size/volatility scaling relation, and show that volatility may have a strong sectoral dependence. Finally, I will show how this framework can be used to study intra-firm and supply chain dynamics.
Joint work with JP Bouchaud and Angelo Secchi.
(Re-)Imag(in)ing Price Trends
Abstract
Abstract: We reconsider the idea of trend-based predictability using methods that flexibly learn price patterns that are most predictive of future returns, rather than testing hypothesized or pre-specified patterns (e.g., momentum and reversal). Our raw predictor data are images—stock-level price charts—from which we elicit the price patterns that best predict returns using machine learning image analysis methods. The predictive patterns we identify are largely distinct from trend signals commonly analyzed in the literature, give more accurate return predictions, translate into more profitable investment strategies, and are robust to a battery of specification variations. They also appear context-independent: Predictive patterns estimated at short time scales (e.g., daily data) give similarly strong predictions when applied at longer time scales (e.g., monthly), and patterns learned from US stocks predict equally well in international markets.
This is based on joint work with Jingwen Jiang and Bryan T. Kelly.