16:00
Quantum Invariants - The Jones Polynomial as a bridge between algebra and topology
Abstract
The world of quantum invariants began in 1983 with the discovery of the Jones polynomial. Later on, Reshetikhin and Turaev developed an algebraic machinery that provides knot invariants. This algebraic construction leads to a sequence of quantum generalisations of this invariant, called coloured Jones polynomials. The original Jones polynomial can be defined by so called skein relations. However, unlike other classical invariants for knots like the Alexander polynomial, its relation to the topology of the complement is still a mysterious and deep question. On the topological side, R. Lawrence defined a sequence of braid group representations on the homology of coverings of configuration spaces. Then, based on her work, Bigelow gave a topological model for the Jones polynomial, as a graded intersection pairing between certain homology classes. We aim to create a bridge between these theories, which interplays between representation theory and low dimensional topology. We describe the Bigelow-Lawrence model, emphasising the construction of the homology classes. Then, we show that the sequence of coloured Jones polynomials can be seen through the same formalism, as topological intersection pairings of homology classes in coverings of the configuration space in the punctured disc.
John Bush - Walking on water: from biolocomotion to quantum foundations
In this lecture John Bush will present seemingly disparate research topics which are in fact united by a common theme and underlaid by a common mathematical framework.
First there is the ingenuity of the natural world where living creatures use surface tension to support themselves on the water surface and propel
themselves along it. Then there is a system discovered by Yves Couder only fifteen years ago, in which a small droplet bounces along the surface of a vibrating liquid bath, guided or 'piloted’ by its own wave field. Its ability to reproduce many features previously thought to be exclusive to quantum systems has launched the field of hydrodynamic quantum analogs, and motivated a critical revisitation of the philosophical foundations of quantum mechanics.
John Bush is a Professor of Applied Mathematics in the Department of Mathematics at MIT specialising in fluid dynamics.
5.00pm-6.00pm, Mathematical Institute, Oxford
Please email @email to register
Watch live:
https://facebook.com/OxfordMathematics
https://livestream.com/oxuni/bush
Oxford Mathematics Public Lectures are generously supported by XTX Markets.
15:45
Algebraic cobordism categories and Grothendieck-Witt-theory
Abstract
I will explain how Lurie‘s approach to L-theory via Poincaré categories can be extended to yield cobordism categories of Poincaré objects à la Ranicki. These categories can be delooped by an iterated Q-construction and the resulting spectrum is a derived version of Grothendieck-Witt-theory. Its homotopy type can be described in terms of K- and L-theory as conjectured by Hesselholt-Madsen. Furthermore, it has a clean universal property analogous to that of K-theory, localisation sequences in much greater generality than classical Grothendieck-Witt theory, gives a cycle description of Weiss-Williams‘ LA-theory and allows for maps from the geometric cobordism category, refining and unifying various known invariants.
All original material is joint work with B.Calmès, E.Dotto, Y.Harpaz, M.Land, K.Moi, D.Nardin, T.Nikolaus and W.Steimle.
14:15
Invariants for sublinearly biLipschitz equivalence
Abstract
The large-scale features of groups and spaces are recorded by asymptotic invariants. Examples of asymptotic invariants are the asymptotic cone and, for hyperbolic groups, the Gromov boundary.
In his study of asymptotic cones of connected Lie groups, Yves Cornulier introduced a class of maps called sublinearly biLipschitz equivalences. Like the more traditionnal quasiisometries, sublinearly biLipschitz equivalences are biLipschitz on the large-scale, but unlike quasiisometries, they are generally not coarse. Sublinearly biLipschitz equivalences still induce biLipschitz homeomorphisms between asymptotic cones. In this talk, I will focus on Gromov-hyperbolic groups and show how the Gromov boundary can be used to produce invariants distinguishing them up to sublinearly biLipschitz equivalences when the asymptotic cones do not. I will especially give applications to the large-scale sublinear geometry of hyperbolic Lie groups.