Foundations of object-based concurrent programming (panel session)
Yonezawa, A Wegner, P Samson/Chairman-Agha, G 9-14 (1991)
Toroidal rotation reversals in JET plasmas
Nave, M Bernardo, J Delabie, E Barnes, M Baruzzo, M Ferreira, J Hillesheim, J Mauriya, A Meneses, L Parra, F Romanelli, M 44th EPS Conference on Plasma Physics, EPS 2017 (01 Jan 2017)
Implementation of multiple species collision operator in gyrokinetic code GS2
Mauriya, A Barnes, M Nave, M Parra, F 44th EPS Conference on Plasma Physics, EPS 2017 (01 Jan 2017)
Thu, 17 Jan 2019
16:00
C4

Microlocal Sheaves on Pinwheels

Dogancan Karabaş
(Kings College London)
Abstract

It is shown by Kashiwara and Schapira (1980s) that for every constructible sheaf on a smooth manifold, one can construct a closed conic Lagrangian subset of its cotangent bundle, called the microsupport of the sheaf. This eventually led to the equivalence of the category of constructible sheaves on a manifold and the Fukaya category of its cotangent bundle by the work of Nadler and Zaslow (2006), and Ganatra, Pardon, and Shende (2018) for partially wrapped Fukaya categories. One can try to generalise this and conjecture that Fukaya category of a Weinstein manifold can be given by constructible (microlocal) sheaves associated to its skeleton. In this talk, I will explain these concepts and confirm the conjecture for a family of Weinstein manifolds which are certain quotients of A_n-Milnor fibres. I will outline the computation of their wrapped Fukaya categories and microlocal sheaves on their skeleta, called pinwheels.

If you type fundamental anagram of calculus into Google you will be led eventually to the string of symbols 6accdæ13eff7i3l9n4o4qrr4s8t12ux, probably accompanied by an explanation more or less as follows: this is a recipe for an anagram - take six copies of a, two of c, one of d, one of æ and so on, then rearrange these letters into a chunk of Latin.

Wed, 31 Oct 2018
11:00
N3.12

Linear and Cyclic Antimetrics

Esteban Gomezllata Marmolejo
(University of Oxford)
Abstract

The core idea behind metric spaces is the triangular inequality. Metrics have been generalized in many ways, but the most tempting way to alter them would be to "flip" the triangular inequality, obtaining an "anti-metric". This, however, only allows for trivial spaces where the distance between any two points is 0. However, if we intertwine the concept of antimetrics with the structures of partial linear--and cyclic--orders, we can define a structure where the anti-triangular inequality holds conditionally. We define this structure, give examples, and show an interesting result involving metrics and antimetrics.

Fusion energy may hold the key to a sustainable future of electricity production. However some technical stumbling blocks remain to be overcome. One central challenge of the fusion enterprise is how to effectively withstand the high heat load emanating from the core plasma. Even the sturdiest solid solutions suffer damage over time, which could be avoided by adding a thin liquid coating.

Subscribe to