15:45
Random graphs with constant r-balls
Abstract
Let F be a fixed infinite, vertex-transitive graph. We say a graph G is `r-locally F' if for every vertex v of G, the ball of radius r and centre v in G is isometric to the ball of radius r in F. For each positive integer n, let G_n = G_n(F,r) be a graph chosen uniformly at random from the set of all unlabelled, n-vertex graphs that are r-locally F. We investigate the properties that the random graph G_n has with high probability --- i.e., how these properties depend upon the fixed graph F.
We show that if F is a Cayley graph of a torsion-free group of polynomial growth, then there exists a positive integer r_0 such that for every integer r at least r_0, with high probability the random graph G_n = G_n(F,r) defined above has largest component of size between n^{c_1} and n^{c_2}, where 0 < c_1 < c_2 < 1 are constants depending upon F alone, and moreover that G_n has at least exp(poly(n)) automorphisms. This contrasts sharply with the random d-regular graph G_n(d) (which corresponds to the case where F is replaced by the infinite d-regular tree).
Our proofs use a mixture of results and techniques from group theory, geometry and combinatorics, including a recent and beautiful `rigidity' result of De La Salle and Tessera.
We obtain somewhat more precise results in the case where F is L^d (the standard Cayley graph of Z^d): for example, we obtain quite precise estimates on the number of n-vertex graphs that are r-locally L^d, for r at least linear in d, using classical results of Bieberbach on crystallographic groups.
Many intriguing open problems remain: concerning groups with torsion, groups with faster than polynomial growth, and what happens for more general structures than graphs.
This is joint work with Itai Benjamini (Weizmann Institute).
17:00
Lattices and correction terms
Abstract
I will introduce two obstructions for a rational homology 3-sphere to smoothly bound a rational homology 4-ball- one coming from Donaldson's theorem on intersection forms of definite 4-manifolds, and the other coming from correction terms in Heegaard Floer homology. If L is a nonunimodular definite lattice, then using a theorem of Elkies we will show that whether L embeds in the standard definite lattice of the same rank is completely determined by a collection of lattice correction terms, one for each metabolizing subgroup of the discriminant group. As a topological application this gives a rephrasing of the obstruction coming from Donaldson's theorem. Furthermore, from this perspective it is easy to see that if the obstruction to bounding a rational homology ball coming from Heegaard Floer correction terms vanishes, then (under some mild hypotheses) the obstruction from Donaldson's theorem vanishes too.
15:45
Geodesic Currents and Counting Curves
Abstract
Two curves in a closed hyperbolic surface of genus g are of the same type if they differ by a mapping class. Mirzakhani studied the number of curves of given type and of hyperbolic length bounded by L, showing that as L grows, it is asymptotic to a constant times L^{6g-6}. In this talk I will discuss a generalization of this result, allowing for other notions of length. For example, the same asymptotics hold if we put any (singular) Riemannian metric on the surface. The main ingredient in this generalization is to study measures on the space of geodesic currents.
15:45
The loop space homology of a small category
Abstract
In an article published in 2009, Dave Benson described, for a finite group $G$, the mod $p$ homology of the space $\Omega(BG^\wedge_p)$ --- the loop space of the $p$-completion of $BG$ --- in purely algebraic terms. In joint work with Carles Broto and Ran Levi, we have tried to better understand Benson's result by generalizing it. We showed that when $\mathcal{C}$ is a small category, $|\mathcal{C}|$ is its geometric realization, $R$ is a commutative ring, and $|\mathcal{C}|^+_R$ is a plus construction of $|\mathcal{C}|$ with respect to homology with coefficients in $R$, then $H_*(\Omega(|\mathcal{C}|^+_R);R)$ is the homology any chain complex of projective $R\mathcal{C}$-modules that satisfies certain conditions. Benson's theorem is then the special case where $\mathcal{C}$ is the category associated to a finite group $G$ and $R=F_p$, so that $p$-completion is a special case of the plus construction.
14:30
On the rational Turán exponents conjecture
Abstract
The extremal number ${\rm ex}(n,F)$ of a graph $F$ is the maximum number of edges in an $n$-vertex graph not containing $F$ as a subgraph. A real number $r \in [0,2]$ is realisable if there exists a graph $F$ with ${\rm ex}(n , F) = \Theta(n^r)$. Several decades ago, Erdős and Simonovits conjectured that every rational number in $[1,2]$ is realisable. Despite decades of effort, the only known realisable numbers are $0,1, \frac{7}{5}, 2$, and the numbers of the form $1+\frac{1}{m}$, $2-\frac{1}{m}$, $2-\frac{2}{m}$ for integers $m \geq 1$. In particular, it is not even known whether the set of all realisable numbers contains a single limit point other than two numbers $1$ and $2$.
We discuss some progress on the conjecture of Erdős and Simonovits. First, we show that $2 - \frac{a}{b}$ is realisable for any integers $a,b \geq 1$ with $b>a$ and $b \equiv \pm 1 ~({\rm mod}\:a)$. This includes all previously known ones, and gives infinitely many limit points $2-\frac{1}{m}$ in the set of all realisable numbers as a consequence. Secondly, we propose a conjecture on subdivisions of bipartite graphs. Apart from being interesting on its own, we show that, somewhat surprisingly, this subdivision conjecture in fact implies that every rational number between 1 and 2 is realisable.
This is joint work with Jaehoon Kim and Hong Liu.
Oxford Mathematician Kristian Kiradjiev has won the Graham Hoare Prize (awarded by the Institute of Mathematics and its Applications) for his article "Connecting the Dots with Pick's Theorem". The Graham Hoare Prize is awarded annually to Early Career Mathematicians for a brilliant Mathematics Today article. Kristian also won the award in 2017. Here he talks about his work.
On Cayley and Langlands type correspondences for Higgs bundles
Abstract
The Hitchin fibration is a natural tool through which one can understand the moduli space of Higgs bundles and its interesting subspaces (branes). After reviewing the type of questions and methods considered in the area, we shall dedicate this talk to the study of certain branes which lie completely inside the singular fibres of the Hitchin fibrations. Through Cayley and Langlands type correspondences, we shall provide a geometric description of these objects, and consider the implications of our methods in the context of representation theory, Langlands duality, and within a more generic study of symmetries on moduli spaces.
Well-posedness of three-dimensional isentropic compressible Navier-Stokes equations with degenerate viscosities and far field vacuum
Abstract
We will talk about the Cauchy problem of the three-dimensional isentropic compressible Navier-Stokes equations. When viscosity coefficients are given as a constant multiple of density's power, based on some analysis of the nonlinear structure of this system, by introducing some new variables and the initial layer compatibility conditions, we identify the class of initial data admitting a local regular solution with far field vacuum and finite energy in some inhomogeneous Sobolev spaces, which solves an open problem of degenerate viscous flow partially mentioned by Bresh-Desjardins-Metivier (2006, Anal. Simi. Fluid Dynam.), Jiu-Wang-Xin (2014, JMFM) and so on. Moreover, in contrast to the classical well-posedness theory in the case of the constant viscosity, we show that one can not obtain any global classical solution whose $L^\infty$ norm of $u$ decays to zero as time $t$ goes to infinity under the assumptions on the conservation laws of total mass and momentum.
Conformal compactification and asymptotic behaviour
Abstract
This talk will be an introduction to the use of conformal methods in asymptotic analysis in general relativity. We shall consider the explicit example of flat spacetime (Minkowski spacetime). The full conformal compactification will be constructed. For a simple example of a conformally invariant equation (we'll take the wave equation), we shall see how the compactification allows to infer precise informations on the asymptotic behaviour of the solution in all directions, for a certain class of data at any rate. Then, depending on time and questions, I will either describe how a scattering theory can be constructed using the same method or, explain how conformal methods can be used on other asymptotically flat geometries.