Tue, 05 Jun 2018
14:30
L6

Fractional decompositions of dense graphs

Richard Montgomery
(Cambridge)
Abstract

It is difficult to determine when a graph G can be edge-covered by edge-disjoint copies of a fixed graph F. That is, when it has an F-decomposition. However, if G is large and has a high minimum degree then it has an F-decomposition, as long as some simple divisibility conditions hold. Recent research allows us to prove bounds on the necessary minimum degree by studying a relaxation of this problem, where a fractional decomposition is sought.

I will show how a relatively simple random process can give a good approximation to a fractional decomposition of a dense graph, and how it can then be made exact. This improves the best known bounds for this problem.
 

Tue, 15 May 2018
14:30
L6

The Erdos Matching Conjecture and related questions

Andrey Kupavskii
(Birmingham University)
Abstract

Consider a family of k-element subsets of an n-element set, and assume that the family does not contain s pairwise disjoint sets. The well-known Erdos Matching Conjecture suggests the maximum size of such a family. Finding the maximum is trivial for n<(s+1)k and is relatively easy for n large in comparison to s,k. There was a splash of activity around the conjecture in the recent years, and, as far as the original question is concerned, the best result is due to Peter Frankl, who verified the conjecture for all n>2sk. In this work, we improve the bound of Frankl for any k and large enough s. We also discuss the connection of the problem to an old question on deviations of sums of random variables going back to the work of Hoeffding and Shrikhande.
 

Tue, 08 May 2018
14:30
L6

The Junta Method for Hypergraphs

Noam Lifshitz
(Bar Ilan University)
Abstract

Numerous problems in extremal hypergraph theory ask to determine the maximal size of a k-uniform hypergraph on n vertices that does not contain an 'enlarged' copy H^+ of a fixed hypergraph H. These include well-known  problems such as the Erdős-Sós 'forbidding one intersection' problem and the Frankl-Füredi 'special simplex' problem.


In this talk we present a general approach to such problems, using a 'junta approximation method' that originates from analysis of Boolean functions. We prove that any (H^+)-free hypergraph is essentially contained in a 'junta' -- a hypergraph determined by a small number of vertices -- that is also (H^+)-free, which effectively reduces the extremal problem to an easier problem on juntas. Using this approach, we obtain, for all C<k<n/C, a complete solution of the extremal problem for a large class of H's, which includes  the aforementioned problems, and solves them for a large new set of parameters.


Based on joint works with David Ellis and Nathan Keller
 

Tue, 01 May 2018
14:30
L6

Better Bounds for Poset Dimension and Boxicity

David Wood
(Monash University)
Abstract

We prove that the dimension of every poset whose comparability graph has maximum degree $\Delta$ is at most $\Delta\log^{1+o(1)} \Delta$. This result improves on a 30-year old bound of F\"uredi and Kahn, and is within a $\log^{o(1)}\Delta$ factor of optimal. We prove this result via the notion of boxicity. The boxicity of a graph $G$ is the minimum integer $d$ such that $G$ is the intersection graph of $d$-dimensional axis-aligned boxes. We prove that every graph with maximum degree $\Delta$ has boxicity at most $\Delta\log^{1+o(1)} \Delta$, which is also within a $\log^{o(1)}\Delta$ factor of optimal. We also show that the maximum boxicity of graphs with Euler genus $g$ is $\Theta(\sqrt{g \log g})$, which solves an open problem of Esperet and Joret and is tight up to a $O(1)$ factor. This is joint work with Alex Scott (arXiv:1804.03271).

Knots are widespread, universal physical structures, from shoelaces to Celtic decoration to the many variants familiar to sailors. They are often simple to construct and aesthetically appealing, yet remain topologically and mechanically quite complex.

Knots are also common in biopolymers such as DNA and proteins, with significant and often detrimental effects, and biological mechanisms also exist for 'unknotting'.

Reachability computation for switching diffusions: Finite abstractions with certifiable and tuneable precision
Laurenti, L Abate, A Bortolussi, L Cardelli, L Ceska, M Kwiatkowska, M 20th ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2017) (13 Apr 2017)
Experimental biological protocols with formal semantics
Abate, A Cardelli, L Kwiatkowska, M Laurenti, L Yordanov, B 16th International Conference on Computational Methods in Systems Biology (CMSB), 12th-14th September 2018, Faculty of Informatics, Masaryk University, Brno (CZ) volume 11095 165-182 (24 Aug 2018)
Subscribe to