Thu, 20 Oct 2022

12:00 - 13:00
L6

Analysis and Numerical Approximation of Stationary Second-order Mean Field Game Partial Differential Inclusions

Yohance Osborne
(University College London)
Abstract

The formulation of Mean Field Games (MFG) via partial differential equations typically requires continuous differentiability of the Hamiltonian in order to determine the advective term in the Kolmogorov--Fokker--Planck equation for the density of players. However, in many cases of practical interest, the underlying optimal control problem may exhibit bang-bang controls, which typically lead to nondifferentiable Hamiltonians. In this talk we will present results on the analysis and numerical approximation of stationary second-order MFG systems for the general case of convex, Lipschitz, but possibly nondifferentiable Hamiltonians. In particular, we will propose a generalization of the MFG system as a Partial Differential Inclusion (PDI) based on interpreting the derivative of the Hamiltonian in terms of subdifferentials of convex functions. We present results that guarantee the existence of unique weak solutions to the stationary MFG PDI under a monotonicity condition similar to one that has been considered previously by Lasry and Lions. Moreover, we will propose a monotone finite element discretization of the weak formulation of the MFG PDI, and present results that confirm the strong H^1-norm convergence of the approximations to the value function and strong L^q-norm convergence of the approximations to the density function. The performance of the numerical method will be illustrated in experiments featuring nonsmooth solutions. This talk is based on joint work with my supervisor Iain Smears.

Thu, 09 Feb 2023

14:00 - 15:00
Lecture Room 3

Toward nonlinear multigrid for nonlinear variational inequalities

Ed Bueler
(University of Alaska Fairbanks)
Abstract

I will start with two very brief surveys.  First is a class of problems, namely variational inequalities (VIs), which generalize PDE problems, and second is a class of solver algorithms, namely full approximation storage (FAS) nonlinear multigrid for PDEs.  Motivation for applying FAS to VIs is demonstrated in the standard mathematical model for glacier surface evolution, a very general VI problem relevant to climate modeling.  (Residuals for this nonlinear and non-local VI problem are computed by solving a Stokes model.)  Some existing nonlinear multilevel VI schemes, based on global (Newton) linearization would seem to be less suited to such general VI problems.  From this context I will sketch some work-in-progress toward the scalable solutions of nonlinear and nonlocal VIs by an FAS-type multilevel method.

An analytic Hochschild-Kostant-Rosenberg theorem
Kelly, J Kremnizer, K Mukherjee, D Advances in Mathematics volume 410 108694 (Dec 2022)
Moduli spaces of compact RCD(0,N)-structures
Mondino, A Navarro, D Mathematische Annalen
Moduli spaces of compact RCD(0,N)-structures
Mondino, A Navarro, D Mathematische Annalen (30 Oct 2022)
Fri, 18 Nov 2022
16:00
L1

Fluid-boundary interaction: confinement effects, stratification and transport

Roberto Camassa
(University of North Carolina)
Further Information

Roberto Camassa is the Kenan Professor of Mathematics in the College of Arts & Sciences, University of North Carolina at Chapel HIll. This year he earned the Society for Industrial and Applied Mathematics’ Kruskal Prize for his work to advance the understanding of nonlinear wave evolution.

 

The colloquium is followed by a drinks reception in the common room.

Abstract

Arguably some of the most interesting phenomena in fluid dynamics, both from a mathematical and a physical perspective, stem from the interplay between a fluid and its boundaries. This talk will present some examples of how boundary effects lead to remarkable outcomes.  Singularities can form in finite time as a consequence of the continuum assumption when material surfaces are in smooth contact with horizontal boundaries of a fluid under gravity. For fluids with chemical solutes, the presence of boundaries impermeable to diffusion adds further dynamics which can give rise to self-induced flows and the formation of coherent structures out of scattered assemblies of immersed bodies. These effects can be analytically and numerically predicted by simple mathematical models and observed in “simple” experimental setups. 

Chained generalisation bounds
Clerico, E Shidani, A Deligiannidis, G Doucet, A 4212-4257 (28 Jun 2022)
Higher corrections of the Ilkovich equation
Chapman, S Monroe, C Reddy, S Van-Brunt, A White, R Journal of Electroanalytical Chemistry volume 925 (15 Oct 2022)
Randomized Hamiltonian Monte Carlo as Scaling Limit of the Bouncy
Particle Sampler and Dimension-Free Convergence Rates
Deligiannidis, G Paulin, D Bouchard-Côté, A Doucet, A Annals of Applied Probability
Randomized Hamiltonian Monte Carlo as Scaling Limit of the Bouncy Particle Sampler and Dimension-Free Convergence Rates
DELIGIANNIDIS, G DOUCET, A PAULIN, D Bouchard-Côté, A Annals of Applied Probability (17 Dec 2021)
Subscribe to