Thu, 07 Feb 2019
12:00
L4

Nonlinear Stein theorem for differential forms

Swarnendu Sil
(ETH Zurich)
Abstract

Stein ($1981$) proved the borderline Sobolev embedding result which states that for $n \geq 2,$ $u \in L^{1}(\mathbb{R}^{n})$ and $\nabla u \in L^{(n,1)}(\mathbb{R}^{n}; \mathbb{R}^{n})$ implies $u$ is continuous. Coupled with standard Calderon-Zygmund estimates for Lorentz spaces, this implies $u \in C^{1}(\mathbb{R}^{n})$ if $\Delta u \in L^{(n,1)}(\mathbb{R}^{n}).$ The search for a nonlinear generalization of this result culminated in the work of Kuusi-Mingione ($2014$), which proves the same result for $p$-Laplacian type systems. \paragraph{} In this talk, we shall discuss how these results can be extended to differential forms. In particular, we can prove that if $u$ is an $\mathbb{R}^{N}$-valued $W^{1,p}_{loc}$ $k$-differential form with $\delta \left( a(x) \lvert du \rvert^{p-2} du \right) \in L^{(n,1)}_{loc}$ in a domain of $\mathbb{R}^{n}$ for $N \geq 1,$ $n \geq 2,$ $0 \leq k \leq n-1, $ $1 < p < \infty, $ with uniformly positive, bounded, Dini continuous scalar function $a$, then $du$ is continuous.

Thu, 31 Jan 2019
12:00
L4

Path-by-path well-posedness of stochastic nonlinear diffusion equations

Benjamin Fehrman
(University of Oxford)
Abstract

In this talk, which is based on joint work with Benjamin Gess, I will describe a pathwise well-posedness theory for stochastic porous media and fast diffusion equations driven by nonlinear, conservative noise. Such equations arise in the theory of mean field games, as an approximation to the Dean–Kawasaki equation in fluctuating hydrodynamics, to describe the fluctuating hydrodynamics of a zero range process, and as a model for the evolution of a thin film in the regime of negligible surface tension.  Our methods are motivated by the theory of stochastic viscosity solutions, which are applied after passing to the equation’s kinetic formulation, for which the noise enters linearly and can be inverted using the theory of rough paths.  I will also mention the application of these methods to nonlinear diffusion equations with linear, multiplicative noise.

Thu, 24 Jan 2019
12:00
L4

On the uniqueness of graphical mean curvature flow

Mariel Saez
(Pontificia Universidad Católica de Chile)
Abstract

In this talk I will discuss recent work with P. Daskalopoulos on sufficient conditions to prove uniqueness of complete graphs evolving by mean curvature flow. It is interesting to remark that the behaviour of solutions to mean curvature flow differs from the heat equation, where non-uniqueness may occur even for smooth initial conditions if the behaviour at infinity is not prescribed for all times. 

Automating "human-like" example-use in mathematics
Pease, A Martin, U CEUR Workshop Proceedings volume 2261 6-15 (01 Jan 2018)
Fri, 21 Dec 2018

15:45 - 16:45
C1

tba

Tue, 14 May 2019
14:15
L4

Exotic Springer Fibres and Type C combinatorics

Neil Saunders
(University of Greenwich)
Abstract

For $G$ connected, reductive algebraic group defined over $\mathbb{C}$ the Springer Correspondence gives a bijection between the irreducible representations of the Weyl group $W$ of $G$ and certain pairs comprising a $G$-orbit on the nilpotent cone of the Lie algebra of $G$ and an irreducible local system attached to that $G$-orbit. These irreducible representations can be concretely realised as a W-action on the top degree homology of the fibres of the Springer resolution. These Springer fibres are geometrically very rich and provide interesting Weyl group combinatorics: for instance, the irreducible components of these Springer fibres form a basis for the corresponding irreducible representation of $W$. In this talk, I'll give a general survey of the Springer Correspondence and then discuss recent joint projects with Daniele Rosso, Vinoth Nandakumar and Arik Wilbert on Kato's Exotic Springer correspondence.

Tue, 26 Feb 2019

15:30 - 16:30
L4

Field and Vertex algebras from geometry and topology

Sven Meinhardt
(Sheffield)
Abstract

I will explain the notion of a singular ring and sketch how singular rings provide field and vertex algebras introduced by Borcherds and Kac. All of these notions make sense in general symmetric monoidal categories and behave nicely with respect to symmetric lax monoidal functors. I will provide a complete classification of singular rings if the tensor product is a cartesian product. This applies in particular to categories of topological spaces or (algebraic) stacks equipped with the usual cartesian product. Moduli spaces provide a rich source of examples of singular rings. By combining these ideas, we obtain vertex and field algebras for each reasonable moduli space and each choice of an orientable homology theory. This generalizes a recent construction of vertex algebras by Dominic Joyce.

Thu, 31 Jan 2019

14:00 - 15:00
L4

Inexact Ideas

Prof Trond Steihaug
(University of Bergen)
Abstract

When the linear system in Newton’s method is approximately solved using an iterative method we have an inexact or truncated Newton method. The outer method is Newton’s method and the inner iterations will be the iterative method. The Inexact Newton framework is now close to 30 years old and is widely used and given names like Newton-Arnoldi, Newton-CG depending on the inner iterative method. In this talk we will explore convergence properties when the outer iterative method is Gauss-Newton, the Halley method or an interior point method for linear programming problems.

Mon, 14 Jan 2019

14:15 - 15:15
L4

Instability of some (positive) Einstein metrics under the Ricci flow

Stuart Hall
(Newcastle University)
Abstract

Einstein metrics are fixed points (up to scaling) of Hamilton's Ricci flow. A natural question to ask is whether a given metric is stable in the sense that the flow returns to the Einstein metric under a small perturbation. I'll give a brief survey of this area focussing on the case when the Einstein constant is positive. An interesting class of metrics where this question is not completely resolved are the compact symmetric spaces. I'll report on some recent progress with Tommy Murphy and James Waldron where we have been able to use a criterion due to Kroencke to show the Kaehler-Einstein metric on some Grassmannians and the bi-invariant metric on the Lie group G_2 are unstable.

 

Subscribe to