From Chabauty's Method to Kim's Non-Abelian Chabauty's Method
Abstract
In 1941, Chabauty gave a way to compute the set of rational points on specific curves. In 2004, Minhyong Kim showed how to extend Chabauty's method to a bigger class of curves using anabelian methods. In the talk, I will explain Chabauty's method and give an outline of how Kim extended those methods.
15:45
A cellular decomposition of the Fulton Mac Pherson operad
Abstract
We construct a cellular decomposition of the
Axelrod-Singer-Fulton-MacPherson compactification of the configuration
spaces in the plane, that is compatible with the operad composition.
Cells are indexed by trees with bi-coloured edges, and vertices are labelled by
cells of the cacti operad. This answers positively a conjecture stated in
2000 by Kontsevich and Soibelman.
16:00
On the negative Pell equation
Abstract
Stevenhagen conjectured that the density of d such that the negative Pell equation x^2-dy^2=-1 is solvable over the integers is 58.1% (to the nearest tenth of a percent), in the set of positive squarefree integers having no prime factors congruent to 3 modulo 4. In joint work with Peter Koymans, Djordjo Milovic, and Carlo Pagano, we use a recent breakthrough of Smith to prove that the infimum of this density is at least 53.8%, improving previous results of Fouvry and Klüners, by studying the distribution of the 8-rank of narrow class groups of quadratic number fields.
16:00
Propagating algebraicity of automorphic representations via functoriality
Abstract
My talk will have two protagonists: (1) Automorphic representations which -- let's be honest -- are very complicated and mysterious, but also (2) Involutions (=automorphisms of order at most 2) of connected reductive groups -- these are very concrete and can often be represented by diagonal matrices with entries 1,-1 or i, -i. The goal is to explain how difficult questions about (1) can be reduced to relatively easy, concrete questions about (2).
Automorphic representations are representation-theoretic generalizations of modular forms. Like modular forms, automorphic representations are initially defined analytically. But unlike modular forms -- where we have a reinterpretation in terms of algebraic geometry -- for most automorphic representations we currently only have a (real) analytic definition. The Langlands Program predicts that a wide class of automorphic representations admit the same algebraic properties which have been known to hold for modular forms since the 1960's and 70's. In particular, certain complex numbers "Hecke eigenvalues" attached to these automorphic representations are conjectured to be algebraic numbers. This remains open in many cases (especially those cases of interest in number theory and algebraic geometry), in particular for Maass forms -- functions on the upper half-plane which are a non-holomorphic variant of modular forms.
I will explain how elementary structure theory of reductive groups over the complex numbers provides new insight into the above algebraicity conjectures; in particular we deduce that the Hecke eigenvalues are algebraic for an infinite class of examples where this was not previously known.
After applying a bunch of "big, old theorems" (in particular Langlands' own archimedean correspondence), it all comes down to studying how involutions of a connected, reductive group vary under group homomorphisms. Here I will write down the key examples explicitly using matrices.
16:00
The Weyl subconvex exponent for Dirichlet L-functions.
Abstract
In the 1920s Weyl proved the first non-trivial estimate for the Riemann zeta function on the critical line: \zeta(1/2+it) << (1+|t|)^{1/6+\epsilon}. The analogous bound for a Dirichlet L-function L(1/2,\chi) of conductor q as q tends to infinity is still unknown in full generality. In a breakthrough around 2000, Conrey and Iwaniec proved the analogue of the Weyl bound for L(1/2,\chi) when \chi is assumed to be quadratic of conductor q. Building on the work of Conrey and Iwaniec, we show (joint work with Matt Young) that the Weyl bound for L(1/2,\chi) holds for all primitive Dirichlet characters \chi. The extension to all moduli q is based on aLindelöf-on-average upper bound for the fourth moment of Dirichlet L-functions of conductor q along a coset of the subgroup of characters modulo d when q^*|d, where q^* is the least positive integer such that q^2|(q^*)^3.
16:00
Propinquity of divisors
Abstract
Let n be a random integer (sampled from {1,..,X} for some large X). It is a classical fact that, typically, n will have around (log n)^{log 2} divisors. Must some of these be close together? Hooley's Delta function Delta(n) is the maximum, over all dyadic intervals I = [t,2t], of the number of divisors of n in I. I will report on joint work with Kevin Ford and Dimitris Koukoulopoulos where we conjecture that typically Delta(n) is about (log log n)^c for some c = 0.353.... given by an equation involving an exotic recurrence relation, and then prove (in some sense) half of this conjecture, establishing that Delta(n) is at least this big almost surely.
16:00
Number fields with prescribed norms
Abstract
Let G be a finite abelian group, let k be a number field, and let x be an element of k. We count Galois extensions K/k with Galois group G such that x is a norm from K/k. In particular, we show that such extensions always exist. This is joint work with Christopher Frei and Daniel Loughran.
16:00
Mordell-Weil groups as Galois modules
Abstract
Let $E/k$ be an elliptic curve over a number field and $K/k$ a Galois extension with group $G$. What can we say about $E(K)$ as a Galois module? Not just what complex representations appear, but its structure as a $\mathbb{Z}[G]$-module. We will look at some examples with small $G$.
L-functions of Kloosterman sums
Abstract
Guided by the analogy with certain moments of the Bessel function that appear as Feynman integrals, Broadhurst and Roberts recently studied a family of L-functions built up by assembling symmetric power moments of Kloosterman sums over finite fields. I will prove that these L-functions arise from potentially automorphic motives over the field of rational numbers, and hence admit a meromorphic continuation to the complex plane that satisfies the expected functional equation. If time permits, I will identify the periods of the corresponding motives with the Bessel moments and make a few comments about the special values of the L-functions. This is a joint work with Claude Sabbah and Jeng-Daw Yu.