New resources and support including:
The new Menopause Support Staff Network
University guidance on menopause in the workplace
Image: Laura Knight - Lubov Tchernicheva
New resources and support including:
The new Menopause Support Staff Network
University guidance on menopause in the workplace
Image: Laura Knight - Lubov Tchernicheva
(Joint Seminar with Number Theory)
I will review how the equations of general relativity near a spacetime singularity map onto an arithmetic hyperbolic billiard dynamics. The semiclassical quantum states for this dynamics are Maaβ cusp forms on fundamental domains of modular groups. For example, gravity in four spacetime dimensions leads to PSL(2,Z) while five dimensional gravity leads to PSL(2,Z[w]), with Z[w] the Eisenstein integers. The automorphic forms can be expressed, in a dilatation (Mellin transformed) basis as L-functions. The Euler product representation of these L-functions indicates that these quantum states admit a dual interpretation as a "primon gas" partition function. I will describe some physically motivated mathematical questions that arise from these observations.
In the first half of this talk, I will provide a brief introduction to Isomonodromic deformations with the one-point torus as my main example, and show the relation to the elliptic form of Painlevé VI equation as well as the Lamé equation. In the second half of this talk, I will present an overview of my results in the past few years concerning the associated tau-functions, conformal blocks, and accessory parameters. Finally, I will motivate how probabilistic methods in conformal field theory help us understand the data within Lamé type equations.
I will report on recent progress on influential conjectures from the 1970s and 1980s (Berry-Tabor, Bohigas-Giannoni-Schmit), which suggest that the spectral statistics of the Laplace-Beltrami operator on a given compact Riemannian manifold should be described either by a Poisson point process or by a random matrix ensemble, depending on whether the geodesic flow is integrable or “chaotic”. This talk will straddle aspects of analysis, geometry, probability, number theory and ergodic theory, and should be accessible to a broad audience. The two most recent results presented in this lecture were obtained in collaboration with Laura Monk and with Wooyeon Kim and Matthew Welsh.
I will present a parametric finite element formulation for structure-preserving numerical methods. The approach introduces two scalar Lagrange multipliers and evolution equations for surface energy and volume, ensuring that the resulting schemes maintain the underlying geometric and physical structures. To illustrate the method, I will discuss two applications: surface diffusion and two-phase Stokes flow. By combining piecewise linear finite elements in space with structure-preserving second-order time discretizations, we obtain fully discrete schemes of high temporal accuracy. Numerical experiments confirm that the proposed methods achieve the expected accuracy while preserving surface energy and volume.
Karel's research revolves around graphs and their applications. Over the last few years, he has focused on the concept of effective resistance and how it captures the geometry of graphs. His current interests are in discrete curvature and discrete geometry and related questions on matroids, tropical geometry and algebraic statistics.
He has worked on applications such as power grid robustness, network epidemics and polarization in social networks.
Karel is a Hooke Fellow here in the Mathematical Institute.
Maximum likelihood estimation is a ubiquitous task in statistics and its applications. The task is: given some observations of a random variable, find the distribution(s) in your statistical model which best explains these observations. A modern perspective on this classical problem is to study the "likelihood geometry" of a statistical model. By focusing on models which have a polynomial parametrization, i.e., lie on an algebraic variety, this perspective brings in tools, algorithms and invariants from algebraic geometry and combinatorics.
In this talk, I will explain some of the key ideas in likelihood geometry and discuss its recent application to the study of likelihood asymptotics, i.e., understanding likelihood estimation for very large or very small observation counts. Agostini et al. showed that these asymptotics can be modeled and understood using tools from tropical geometry, and they used this to completely describe the asymptotics for linear models. In our work, we use the same approach to treat the class of log-linear models (also known as Gibbs distributions or maximum entropy models) and give a complete and combinatorial description of the likelihood asymptotics under some conditions.
This talk is based on joint work with Emma Boniface (UC Berkeley) and Serkan Hoşten (San Francisco SU), available at: https://epubs.siam.org/doi/full/10.1137/24M1656839