Dimension liftings for quantum computation of partial differential equations and related problems
Abstract
Quantum computers are designed based on quantum mechanics principle, they are most suitable to solve the Schrodinger equation, and linear PDEs (and ODEs) evolved by unitary operators. It is important to to explore whether other problems in scientific computing, such as ODEs, PDEs, and linear algebra that arise in both classical and quantum systems which are not unitary evolution, can be handled by quantum computers.
We will present a systematic way to develop quantum simulation algorithms for general differential equations. Our basic framework is dimension lifting, that transfers non-autonomous ODEs/PDEs systems to autonomous ones, nonlinear PDEs to linear ones, and linear ones to Schrodinger type PDEs—coined “Schrodingerization”—with uniform evolutions. Our formulation allows both qubit and qumode (continuous-variable) formulations, and their hybridizations, and provides the foundation for analog quantum computing which are easier to realize in the near term. We will also discuss dimension lifting techniques for quantum simulation of stochastic DEs and PDEs with fractional derivatives.
Self-Supervised Machine Imaging
Abstract
Modern deep learning methods provide the state-of-the-art in image reconstruction in most areas of computational imaging. However, such techniques are very data hungry and in a number of key imaging problems access to ground truth data is challenging if not impossible. This has led to the emergence of a range of self-supervised learning algorithms for imaging that attempt to learn to image without ground truth data.
In this talk I will review some of the existing techniques and look at what is and might be possible in self-supervised imaging.