The Plankton Hydrodynamic Playbook
Christophe is Professor of Fluid Mechanics at Centrale Marseille. His research activity is carried out at the IRPHE institute in Marseille.
'His research addresses various fundamental problems of fluid and solid mechanics, including fluid-structure interactions, hydrodynamic instabilities, animal locomotion, aeroelasticity, rotating flows, and plant biomechanics. It generally involves a combination of analytical modeling, experiments, and numerical work.' (Taken from his website here: https://www.irphe.fr/~eloy/).'
Abstract
By definition, planktonic organisms drift with the water flows. But these millimetric organisms are not necessarily passive; many can swim and can sense the surrounding flow through mechanosensory hairs. But how useful can be flow sensing in a turbulent environment? To address this question, we show two examples of smart planktonic behavior: (1) we develop a model where plantkters choose a swimming direction as a function of the velocity gradient to "surf on turbulence" and move efficiently upwards; (2) we show how a plankter measuring the velocity gradient may track the position of a swimming target from its hydrodynamic signature.
Ernst Haeckel, Kunstformen der Natur (1904), Copepoda
"Multiple shapes from one elastomer sheet" and "Modelling the onset of arterial blood clotting"
Abstract
Andrea Giudici: Multiple shapes from one elastomer sheet
Active soft materials, such as Liquid Crystal Elastomers (LCEs), possess a unique property: the ability to change shape in response to thermal or optical stimuli. This makes them attractive for various applications, including bioengineering, biomimetics, and soft robotics. The classic example of a shape change in LCEs is the transformation of a flat sheet into a complex curved surface through the imprinting of a spatially varying deformation field. Despite its effectiveness, this approach has one important limitation: once the deformation field is imprinted in the material, it cannot be amended, hindering the ability to achieve multiple target shapes.
In this talk, I present a solution to this challenge and discuss how modulating the degree of actuation using light intensity offers a route towards programming multiple shapes. Moreover, I introduce a theoretical framework that allows us to sculpt any surface of revolution using light.
Edwina Yeo: Modelling the onset of arterial blood clotting
Arterial blood clot formation (thrombosis) is the leading cause of both stroke and heart attack. The blood protein Von Willebrand Factor (VWF) is critical in facilitating arterial thrombosis. At pathologically high shear rates the protein unfolds and rapidly captures platelets from the flow.
I will present two pieces of modelling to predict the location of clot formation in a diseased artery. Firstly a continuum model to describe the mechanosensitive protein VWF and secondly a model for platelet transport and deposition to VWF. We interface this model with in vitro data of thrombosis in a long, thin rectangular microfluidic geometry. Using a reduced model, the unknown model parameters which determine platelet deposition can be calibrated.
12:00
Finite time blowup of incompressible flows surrounding compressible bubbles evolving under soft equations of state
Note: we would recommend to join the meeting using the Zoom client for best user experience.
Robert, formerly a Research Fellow in Nonlinear Dynamics, and a Glasstone Fellow here at the Mathematical Institute. He is now a Senior Lecturer in the Department of Mathematics at the University of Otago, New Zealand. You can read more about Robert's teaching and research here
Abstract
We explore the dynamics of a compressible fluid bubble surrounded by an incompressible fluid of infinite extent in three-dimensions, constructing bubble solutions with finite time blowup under this framework when the equation of state relating pressure and volume is soft (e.g., with volume singularities that are locally weaker than that in the Boyle-Mariotte law), resulting in a finite time blowup of the surrounding incompressible fluid, as well. We focus on two families of solutions, corresponding to a soft polytropic process (with the bubble decreasing in size until eventual collapse, resulting in velocity and pressure blowup) and a cavitation equation of state (with the bubble expanding until it reaches a critical cavitation volume, at which pressure blows up to negative infinity, indicating a vacuum). Interestingly, the kinetic energy of these solutions remains bounded up to the finite blowup time, making these solutions more physically plausible than those developing infinite energy. For all cases considered, we construct exact solutions for specific parameter sets, as well as analytical and numerical solutions which show the robustness of the qualitative blowup behaviors for more generic parameter sets. Our approach suggests novel -- and perhaps physical -- routes to the finite time blowup of fluid equations.
12:00
Copolymer templating from a mathematical and physical perspective
Thomas is a Reader in Biomolecular Systems in the Department of Bioengineering at Imperial College. He leads the "Principles of Biomolecular Systems" group. 'His group probes the fundamental principles underlying complex biochemical systems through theoretical modelling, simulation and experiment.' (Taken from his website: https://www.imperial.ac.uk/principles-of-biomolecular-systems/)
You can also learn more about their work via their blog here
Abstract
Biological systems achieve their complexity by processing and exploiting information stored in molecular copolymers such as DNA, RNA and proteins. Despite the ubiquity and power of this approach in natural systems, our ability to implement similar functionality in synthetic systems is very limited. In this talk, we will first outline a new mathematical framework for analysing general models of colymerisation for infinitely long polymers. For a given model of copolymerisation, this approach allows for the extraction of key quantities such as the sequence distribution, speed of polymerisation and the rate of molecular fuel consumption without resorting to simulation. Subsequently, we will explore mechanisms that allow for reliable copying of the information stored in finite-length template copolymers, before touching on recent experimental work in which these ideas are put into practice.
12:00
From network dynamics to graph-based learning
Prof. Mauricio Barahona is Chair in Biomathematics and Director of the EPSRC Centre for Mathematics of Precision Healthcare at Imperial. He obtained his PhD at MIT, under Steve Strogatz, followed by a MEC Fellowship at Stanford and the Edison International Fellowship at Caltech. His research is in the development of mathematical and computational methods for the analysis of biological, social and engineering systems using ideas from graph theory, dynamical systems, stochastic processes, optimisation and machine learning.
Abstract
This talk will explore a series of topics and example applications at the interface of graph theory and dynamics, from synchronization and diffusion dynamics on networks, to graph-based data clustering, to graph convolutional neural networks. The underlying links are provided by concepts in spectral graph theory.
14:30
Aerodynamics inside and out: Bird respiration and flocking
Note: we would recommend to join the meeting using the Zoom client for best user experience.
Leif Ristroph is an Associate Professor of Mathematics at The Courant Institute, New York University.
'He is an experimental physicist and applied mathematician who specializes in fluid dynamics, with a particular emphasis on fluid-structure interactions as applied to biological and geophysical flows. His biophysical work includes studies of the aerodynamics and stabilization of insect flight as well as the hydrodynamics of schooling and flow-sensing in swimming fish. Relevant to geophysical flows, he is interested in problems ranging from instabilities of interfacial flows to the evolution of shape during fluid mechanical erosion.' (taken from https://math.nyu.edu/~ristroph/)
Selected Publications
L. Ristroph and S. Childress, "Stable hovering of a jellyfish-like flying machine", Journal of the Royal Society Interface 11, 20130992 (2014)
L. Ristroph, M. N.J. Moore, S. Childress, M.J. Shelley, and J. Zhang, "Sculpting of an erodible body by flowing water", Proceedings of the National Academy of Sciences 109, 19606 (2012)
B. Liu, L. Ristroph, A. Weathers, S. Childress, and J. Zhang, "Intrinsic stability of a body hovering in an oscillating airflow", Physical Review Letters 108, 068103 (2012)
Abstract
ife forms have devised impressive and subtle ways to exploit fluid flows. I’ll talk about birds as flying machines whose behaviors can give surprising insights into flow physics. One story explains how flocking interactions can help to bring flapping flyers into orderly formations. A second story involves the more subtle role of aerodynamics in the highly efficient breathing of birds, which is thought to be critical to their ability to fly.